Kurs-ufa.ru

В помощь Электрику
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зачем нужен дроссель для люминесцентных ламп

Зачем используют дроссель для люминесцентных ламп?

Люминесцентные лампы в качестве источника света достаточно часто можно встретить как в просторных общественных местах, так и в квартирах. Столь большой спрос на них обусловлен, прежде всего, их экономичными свойствами. Если провести их сравнение с лампами накаливания, то, безусловно, они выигрывают практически по всем параметрам (высокий КПД и высокая светоотдача, долговечность). Но есть одно но, которое в некоторой степени может, является как преимуществом, так и недостатком. Это наличие дросселя и стартера. В данной статье речь пойдет как раз о дросселе. Попробуем разобраться, для чего нужен дроссель для люминесцентных ламп, какой у него принцип работы, уделим внимание техническим характеристикам, составным компонентам, видам дросселей, а также рассмотрим другие не менее важные вопросы.

Принцип работы

В классическом виде ЛЛ (люминесцентная лампа) представляет собой стеклянную трубку с нанесенным на ее внутреннюю поверхность люминофором. Внутри трубки при пониженном давлении помещают инертный газ, смешанный с парами ртути. На концах изделия впаиваются электроды (катоды) из вольфрама.

В рабочем состоянии после пробоя газа высоким напряжением через лампу протекает ток, в результате воздействия которого появляется невидимое для человеческого глаза УФ излучение. Под воздействием этого излучения люминофор генерирует световой поток в видимом диапазоне, цветовые оттенки которого может меняться в зависимости от типа люминофора.

Ток при газовом разряде меняется лавинообразно и для его ограничения используется последовательно включенная нагрузка.

Примечание! Для запуска и поддержания рабочего режима ЛЛ используется специальная пускорегулирующая аппаратура (ПРА). Такая аппаратура часто называется балластом.

Тандемное подключение

Ниже показана схема, где две лампы люминесцентного типа включены последовательно.

Схема тандемного подключения

Принцип работы у представленной схемы не отличается от типового подключения, единственная разница — в параметрах стартеров. При двухламповом подключении применяются стартеры, у которых «пробивное» напряжение 110 В (тип S2), для однолампового – 220 В (тип S10).

Стартеры S10 и S2 на 220 и 110 В соответственно

Как выбрать дроссель в светильник

21.01.2020

Люминесцентные лампы стали весьма распространенным источником света, потеснив лампы накаливания и галогенные аналоги. Они потребляют гораздо меньше электроэнергии, дольше живут и обладают разнообразием цветовой температуры, из которых наиболее востребованный спектр – дневной. Такой диапазон лампам удалось обеспечить за счет технологии свечения и конструкции, где важным элементом выступает дроссель. От этой детали зависит включение и качество работы люминесцентных источников, поэтому рассказываем о тонкостях работы балласта и как не ошибиться при его выборе.

Как работает дроссель в конструкции:

Назначение дросселя – это создание импульсов для розжига лампы и ограничение подачи тока до необходимых параметров, которые соответствуют конкретному типу светильников. Различают два вида балластов – электромагнитные и электронные, которые отличаются схемой подключения и техническими характеристиками, однако выполняют идентичные функции. Общий принцип работы условно выглядит так:

• после подключения к сети через дроссель начинает проходить ток силой до 50 мА;
• инертный газ распадается на ионы, увеличивая силу тока и, соответственно, разогревает контакты;
• далее электроды замыкаются, повышая силу тока до 600 мА, образуется электрическая дуга;
• свечение дуги образует ультрафиолет, который сталкивается с люминофорным покрытием в лампе и преобразуется в видимый свет.

Дроссель – это обязательная деталь в люминесцентных, натриевых, металлогалогенных и дуговых ртутных лампах. Наравне со стартером он обеспечивает приборам подключение к сети и стабильную работу.

Электромагнитный балласт :

Дроссель такого типа используют совместно со стартером, подключая лампу к бытовой сети. Подачу напряжения в ЭмПРА сопровождает электрический разряд, а также интенсивный разогрев электродов с их последующим замыканием. В период замыкания происходит резкое увеличение силы тока за счет сопротивления дросселя. Как только стартер остывает, электроды размыкаются. При размыкании цепи стартером дроссель образует высоковольтный импульс, зажигая лампу.

Электромагнитные балласты надежны в работе и отличаются простой сборкой, однако обладают своими минусами. Среди них:

• Образование мерцаний. Такой свет утомляет зрение и понижает работоспособность, что важно учитывать при использовании ЭмПРА в школах или офисах.
• Период зажигания от 2 секунд в первой половине срока службы и до 5-8 секунд, начиная со второй. Время ожидания при включении лампы оборачивается небольшим увеличением энергопотребления.
• Дроссель в процессе работе образует характерный гул.
• Размеры и вес конструкции больше, чем у электронных балластов.

Главное преимущество электромагнитного дросселя – невысокая цена, которая покрывает недостатки устройства и позволяет конкурировать с более совершенными аналогами.

Электронный балласт:

Прибор используют ровно с той же целью, что и магнитный модуль, однако его конструкция и технические характеристики сильно отличаются. Электронный дроссель позволяет экономить до 30% общего расхода электроэнергии, сохраняя при этом мощность светового потока. Этого удалось достичь, благодаря увеличению КПД и параметров изначальной светоотдачи. Отдельное преимущество ЭПРА – мягкая система запуска, которая продлевает жизнь лампы и обеспечивает моментальное включение.

Практическое использование электронного балласта показало, что лампы выходят из строя гораздо реже, а необходимость применять стартер для подключения вообще отступила. ЭПРА отличаются тихой работой и качеством света: они не образуют фоновых шумов и видимых мерцаний, поэтому исходящий свет комфортно воспринимается зрением. Причем пульсации не проявляются даже в условиях перепада напряжения (в рамках 200-250 В). Электронные балласты можно использовать с диммером и по мере необходимости регулировать яркость света.

Электронный балласт обладает и другими плюсами:

• Меньший размер и вес конструкции, чем у ЭПРА.
• Плавное включение избавляет лампы от перегрузки, чем увеличивает эффективный срок службы.
• Обладает дополнительной защитой от перегрева, что повышает пожарную безопасность.

Отдельные производители оснащают балласты предохранителем, который защищает лампы от сетевых перепадов. Главный минус ЭПРА – высокая стоимость, которая вдвое превосходит магнитные дроссели.

На что обратить внимание:

При покупке ЭПРА важно соотносить его мощность с мощностью лампочек, поскольку расхождение параметров может вывести прибор из строя (например, если номинал светильника превышает возможности дросселя). В ситуации с ЭмПРА обратная история: преждевременное завершение службы чаще угрожает самим лампам, нежели устройству. Поэтому «силовым» параметрам необходимо уделить внимание в обоих случаях.

Техническое устройство дросселя скрывает внешняя конструкция, что не позволяет определить визуально качество его сборки. По этой причине главным критерием при выборе становится производитель. Здесь стоит отдать предпочтение известному бренду, продукция которого успела заручиться хорошей репутацией. Даже на случай заводского брака у вас будет возможность бесплатно заменить нерабочий дроссель новым экземпляром, воспользовавшись гарантией.

И последний критерий – это цена балласта. Напомним, что приборы выполняют абсолютно одинаковые функции, но отличаются характеристиками и техническим устройством. Если вам нужен современный модуль с бесшумной работой и качественным светом – выбирайте электронный балласт. В случае, когда наличие посторонних шумов и качество света не критично, а на первое место выходит финансовая сторона – выбирайте магнитный. Технически это устройство считается устаревшим, но выполняет ключевые функции и экономит бюджет покупки.

Принцип работы и обзор видов

Устройство дросселя для газоразрядных ламп довольно простое: по сути, это катушка индуктивности с ферромагнитным сердечником. Такой прибор используется, только если схема предусматривает подключение лампы с помощью электромагнитного пускорегулирующего аппарата. Электронный ПРА содержит в своей конструкции стабилизатор и преобразователь частоты, эти элементы позволяют зажечь свет, так как реализуют функции дросселя и стартера.

Чтобы ответить на вопрос, зачем нужен дроссель, рекомендуется сначала понять принцип его работы. При включении в цепь происходит сдвиг фаз между основными электрическими параметрами: напряжением и током. Это отставание определяется такой характеристикой, как cosφ (коэффициент мощности). При определении расчетного значения активной составляющей нагрузки учитывается данная величина. Если показатель коэффициента мощности небольшой, возрастает уровень нагрузки. Поэтому в схему включают еще и конденсатор с компенсационной функцией.

Используя данный элемент (3-5 мкФ) при подключении люминесцентных ламп, мощность которых достигает 36 Вт, можно добиться увеличения cosφ до 0,85. Минимальный предел мощности люминесцентных ламп в данном случае – 18 W. Емкость конденсатора для источников света 18 W и 36 W может быть одинаковой. Уровень выдерживаемой дросселем нагрузки должен соответствовать мощности источника света.

Различают несколько исполнений таких приборов, каждое из которых отличается по величине потери мощности:

  • D (обычный);
  • В (пониженный);
  • С (самый низкий).

Принцип действия дросселя предполагает расход части мощности не по прямому назначению, а на нагрев прибора. Полезная работа при этом не выполняется, а значит, уровень потерь определяет эффективность функционирования: чем выше эта величина, тем больше греется дроссель для подключения люминесцентной лампы.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать.

Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя.

Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности.

Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Выводы.

Хоть схема и имеет полувековую историю, она до сих пор остается актуальной. ПРА необходим для работы люминесцентной лампы. Все компоненты производятся и стоят недорого. К достоинствам этой схемы можно отнести ее простоту и доступность компонентов. Обычно дроссель является самым долгоживущим компонентом схемы.

Из минусов отмечено, что при использовании классической схемы при включении освещения несколько секунд наблюдается мерцание. Это плохо отражается на сроке полезной эксплуатации самого источника света. Т.е. Лампа проработает меньше в такое схеме, чем при использовании электронного пускателя.

В плане экономической целесообразности, при частом включении и выключении света использовать такую элементную базу не выгодно, проще приобрести электронный пускатель, хоть его покупка и обойдется дороже, но это будут одномоментные затраты.

Люминесцентные лампы иногда выходят из строя. Причины разные: от заводского брака до неправильной эксплуатации. В ряде случаев ремонт можно сделать своими силами и простыми инструментами.

Рекомендуем к просмотру: Ремонт электронного балласта люминесцентной лампы

Перед ремонтом необходимо точно идентифицировать узел поломки. Для этого лампу и всю сопутствующую аппаратуру придется разобрать.

  • набор отверток с полностью изолированными рукоятками;
  • монтажный нож;
  • кусачки;
  • пассатижи;
  • мультиметр;
  • индикаторная отвертка;
  • моток медного провода (сечением от 0,75 до 1,5 мм²).

Дополнительно может потребоваться новый стартер, исправная лампа или дроссель. Все зависит от того, какой именно узел вышел из строя.

Наиболее распространенные проблемы:

  • Лампа не включается и не реагирует на стартер. Причина может быть в любом из элементов, поэтому нужно поменять сначала стартер, затем лампу, попутно проверяя работоспособность схемы. Если не помогло, значит проблема в дросселе.
  • Наличие в колбе небольшого разряда в виде змейки говорит о неконтролируемом возрастании тока. Причина неисправности точно в дросселе, который надо заменить. Иначе лампа быстро перегорит.
  • Пульсации и мерцания во время работы. Замените последовательно сначала лампу, затем стартер. Чаще виновником оказывается дроссель, который перестает стабилизировать напряжение.

Обычно неисправность дросселя устраняется его заменой. Однако при желании можно разобрать элемент и попытаться восстановить работоспособность. Здесь нужны серьезные познания в электротехнике и много времени. Учитывая небольшую стоимость нового дросселя, это нецелесообразно.

Читать еще:  Как подобрать тепловое реле для электродвигателя 380в
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector