Схема люминесцентного светильника
Схемы подключения люминесцентных ламп
С повышением цен на электроэнергию, приходится задумываться о более экономных светильниках. Одни из таких используют осветительные приборы дневного света. Схема подключения люминесцентных ламп не слишком сложна, так что даже без особых знаний электротехники можно разобраться.
Хорошая освещенность и линейные размеры — преимущества дневного света
Устройство энергосберегающей лампы. Схема и ремонт.
В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.
Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.
Отличительные особенности люминесцентных ламп от обычных ламп накаливания.
Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.
Устройство компактной люминесцентной лампы (КЛЛ).
Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.
Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.
По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.
Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.
Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.
Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.
При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.
Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.
Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.
Ремонт бытовых люминесцентных ламп с электронным балластом.
Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.
Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.
Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.
Опасность люминесцентных ламп и рекомендации по использованию.
Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .
При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .
Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.
Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.
Разборка люминесцентной лампы с электронным балластом.
Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.
Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.
Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.
Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).
Восстановление работоспособности ламп с электронным балластом.
При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.
Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.
Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.
В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.
Холодный и горячий режим запуска люминесцентных ламп.
Бытовые люминесцентные лампы бывают двух типов:
С холодным запуском
С горячим запуском
Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.
Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.
Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.
Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.
В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.
В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.
Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.
Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.
Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.
Преимущества балластов разных типов
Прежде чем выбрать и, тем более, купить балласт того или иного типа, имеет смысл разобраться в их отличиях друг от друга. К преимуществам ЭмПРА можно отнести:
- умеренную стоимость;
- высокую надежность;
- возможность подключения двух ламп половинной мощности.
Электронные балласты появились много позже своих дроссельных собратьев, а значит, и список преимуществ у них больше:
- небольшие габариты и вес;
- при той же светоотдаче энергопотребление на 20% ниже, чем у ЭмПРА;
- почти не нагреваются;
- работают абсолютно бесшумно (ЭмПРА нередко гудит);
- отсутствие мерцания лампы с частотой сети;
- срок службы лампы на 50% выше, чем с дросселем;
- лампа запускается мгновенно, без «мигания».
Но за все эти преимущества, естественно, придется заплатить – стоимость электронного устройства ощутимо выше, чем цена дроссельного, а надежность, увы, пока еще ниже. Кроме того, если мощность электронного балласта ниже мощности лампы, то в отличие от электромагнитного он просто сгорит.
Схема для подключения нескольких ламп
Преимущественно во всех светильниках используют не одну люминесцентную лампу, а несколько, минимум две. B этом случае элементы соединяют в схеме последовательно: А между проводами фазы и ноля устанавливается конденсатор. Их включают в схемы для предотвращения помех в общей электросети, а также для компенсирования возникающей реактивной мощности.
Недостаток такой схемы – параллельность подключения. Если испортится один элемент схемы – все остальные также не будут работать.
Монтаж двух ламп
Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.
Итак, опишем процесс подключения сразу 2 люминесцентных ламп:
- Фаза вначале должна подходить ко входу дросселя
- От него она должна поступать к первой лампе
- Затем направляться к первому стартеру
- Далее переходить на вторую контактную пару этого же источника света
- Выходящий контакт соединяют с нулем
- Точно в такой же последовательности подсоединяют вторую трубу. Первым – ПРА. Затем контакт второго источника света и т.д.
Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.
Варианты схем подключения
Лампы дневного света требуют установки в цепочку устройства для запуска. Существует множество схем для включения люминесцентных ламп, отличающихся по цене и используемым деталям. Чтобы понять принцип работы, перед выбором необходимо изучить все.
С использованием электромагнитного баланса – ЭмПРА
Главный элемент электромагнитного баланса – дроссель (своеобразный клапан), его мощность должна быть равна мощности светильника. Клапан при замыкании электродов ограничивает ток, создает уровень вольтажа, требуемый для пробоя инертного газа, поддерживает уровень разряда.
Кроме дросселя к цепочке подсоединяется стартер (неоновый источник света), питающийся от электросети сети с переменным напряжением. Его предназначение – включение прибора освещения. Для погашения искр и повышения качества неонового импульса в пускатель устанавливается небольшой конденсатор.
Справка! Стартер можно заменить кнопкой. Для включения ее нужно нажать, после запуска светильника можно отпустить.
Пускатель подключается к контактам осветительного прибора параллельно. К свободным контактам подсоединяется дроссель, к питающим контактам – конденсатор, защищающий от помех сети и компенсирующий реактивную мощность.
Работа схемы ЭмПРА:
- после включения ток поступает (через дроссель) на нить накаливания, потом уходит через пускатель;
- контакты стартера и нить разогреваются;
- ток после соединения контактов пускателя увеличивается до 3-х раз;
- резкий скачек ускоряет разогрев электродов;
- прибор загорается, контакты пускателя размыкаются.
ЭмПРА – надежное и проверенное временем оборудование, простое в использовании и обладающее доступной ценой. Но эти приборы тяжелые, для включения светильника требуется 3 секунды, дроссель достаточно шумный, потребляет сравнительно большое количество энергии, эффективность работы снижается при минусовой температуре, светильник мерцает, что оказывает отрицательное воздействие на глаза.
Две трубки и два дросселя
Для подключения прибора с двумя лампами требуются 2 дросселя-клапана и 2 стартера.
Порядок подсоединения параллельно:
- параллельное присоединение к лампам стартеров;
- присоединение через конденсатор фазы к входу клапана;
- параллельное подключение лампочек к дросселю;
- соединение контактов, оставшихся свободными, с нулем.
Схема подключения двух ламп от одного дросселя
При необходимости в подключении двух люминесцентных ламп к одному дросселю необходимо к торцевым штырям источников света подключить параллельно стартеры. Свободные контакты последовательно присоединяются к сети через дроссель. К лампочкам параллельно подключаются конденсаторы. Их предназначение – компенсация реактивной мощности и защита от помех, создаваемых электросетью.
Электронный балласт
ЭПРА (электронный пускорегулирующий аппарат) считается самым удобным оборудованием для создания электрической схемы подключения люминесцентного светильника. Чаще всего помещается в цоколь и преобразует частоту 50Гц в 20-60 кГц, предотвращая мерцание.
Внешне ЭПРА – это небольшой блок, оснащенный клеммами. Детали, размещенные внутри, припаяны к печатной плате. Параметры деталей подбираются так, чтобы осветительный прибор загорался быстро. Несмотря на отсутствие пускателя больше ничего для работы осветительного прибора покупать не нужно.
Монтаж упрощает схема на обратной стороне блока. По ней можно определить, для какого количества лампочек прибор предназначен, какие технические характеристики у них должны быть. Два контакта ЭПРА присоединяются к одной из пар контактов лампочки, два остальных – к другой паре. К входу подключается питание.
Преимущества схемы ЭПРА:
- плавное включение благодаря бережному подогреву электродов;
- возможность использования при минусовых температурах;
- небольшие размеры;
- небольшой вес;
- надежность;
- низкое потребление энергии;
- способность подстроиться под характеристики источника света;
- увеличение срока эксплуатации осветительных приборов.
Внимание! К освети тельным приборам с ЭПРА можно подключать диммеры.
Через некоторое время после начала эксплуатации люминесцентным лампочкам необходимо повышение напряжения при включении. ЭПРА подстраивается под новые параметры и обеспечивает высокое качество освещения.
Использование умножителей напряжения
Умножитель напряжения – это одна (или несколько) цепочек, состоящих из конденсатора и диода. В период, когда диод открыт, конденсатор заряжается до установленного уровня, поэтому способен питать нагрузку. Если ее нет, накопленное напряжение сохраняется, диод больше не открывается, ток от источника питания ему не требуется.
При подключении люминесцентной лампочки напряжение в умножителе может превышать 1 кВ. Если его достаточно для запуска, источник света зажигается. Во время работы напряжение примерно 100 В, умножитель выполняет роль выпрямителя.
Подобные схемы люминесцентных осветительных приборов с конденсатором не подогревают катоды, не обеспечивают импульсы и синусоидальность тока, поэтому функциональность источника света снижается, он быстро выходит из строя. Чтобы собрать подобное устройство, требуется конденсатор с емкостью, достаточной для работы в бытовой электросети. Обязательно нужно включить в схему редуктор, ограничивающий ток в процессе розжига. Он потребляет примерно 1/6 от мощности лампочки, что требует устройства системы охлаждения.
Умножитель напряжения может включить люминесцентный источник света без дросселя-клапана и стартера, но используется только с целью продлить срок службы сгоревших светильников.
Эта схема работает даже в том случае, если нити накала уже сгорели, так как выводы замыкаются между собой.
Диоды можно выбрать любые, единственное условие – обратное напряжение от 1000 В и ток, равный потребляемому источником света (не менее 0,5 А). Для конденсаторов напряжение такое же, емкость 1-2 мкФ.
Внимание! Эту схему не желательно использовать в жилых помещениях, мастерских или гаражах из-за высокого коэффициента мерцания.
Клапан и пускатель не требуется, если роль балласта выполняет лампочка накаливания или плата от компактного люминесцентного осветительного прибора (аналог ЭПРА небольшого формата).
Подключение без стартера
Задача стартера – продлить время разогрева. Но он служит не долго, поэтому приходится решать проблему, как подключить лампу дневного света без этого элемента. Чаще всего стартер заменяется кнопкой, позволяющей сначала замкнуть цепь, а через 3 секунды разомкнуть.
Последовательное подключение двух лампочек
Существуют светильники, конструкция которых требует подключения 2-х лампочек последовательно.
Порядок последовательного соединения:
- параллельное присоединение к лампам стартеров;
- подключение фазы (через конденсатор) к входу дросселя;
- последовательное подключение к сети (через дроссель-клапан) ламп;
- соединение контактов, оставшихся свободными, с нулем.
Стартеры нужно купить на 127 В.
Схема подключения люминесцентных ламп без стартера
Питание от В без дросселя и стартера Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают.
Для работы больше никаких устройств не надо.
Следующая схема позволяет запустить лампу дневного света с перегоревшими пусковыми спиралями мощностью до 40 Вт при использовании лампы меньшей мощности дроссель L1 придется заменить на соответствующий используемой лампе. Это можно заметить по наличию темных пятен люминофора с одной из сторон колбы. На вход подают электропитание.
Индуктивности дросселя должно хватать на оба источника света. Как видно из рисунка ниже, кроме дросселя и стартера в схеме присутствует обычный диоднй мост. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.
Принцип работы газоразрядных люминесцентных ламп
Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска. Для работы больше никаких устройств не надо. При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.
Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Схема подключения люминесцентных ламп с дросселем
Во всех используется принцип создания высокого напряжения запуска при помощи умножителя напряжения. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Как только контакты соединились, ток в цепи мгновенно вырастает в раза.
В схеме, приведенной ниже, роль токоограничивающего дросселя выполняет обычная лампа накаливания, мощность которой равна мощности используемой ЛДС. Правильно собранная схема при исправных элементах начинает работать сразу же. Схема ее подключения есть справа. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Проверка стартера люминесцентной лампы