Kurs-ufa.ru

В помощь Электрику
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет мощности электродвигателя

У них магнитное поле статора и ротора создается внешними источниками, они независимы друг от друга, их смена положения их полюсов происходит синхронно.

Исходя из принципа механики Ньютона, утверждающего, что всякое движение относительно, электродвигатель постоянного тока можно назвать синхронной машиной. Хотя магнитные поля статора и ротора в ней неподвижные, а вращение вала происходит за счет эффекта отталкивания одноименных полюсов магнитов и притягивания разноименных.

Синхронизация их положения относительно друг друга происходит особого устройства – коллектора, расположенного на валу ротора. Это кольцо из меди, поделенное на секторы диэлектриком. Концы обмоток ротора подключаются к этим секторам и создают контактные пары.

На них через угольные щетки подается постоянный ток. Во время вращения вала происходит переключение полюсов между парами. Магнитное поле статора может создаваться металлами с остаточным магнетизмом или прохождением тока по обмоткам. Последние применяются в электрических машинах большой мощности.

Их достоинством является большой коэффициент полезного действия, до 98%, а также стабильно высокий вращающий момент и малая зависимость от перегрузок. Двигатели постоянного тока отлично подходят для привода подъемных механизмов, а также в качестве тяговых на электротранспорте.

Ими очень просто управлять: для снижения скорости вращения надо лишь уменьшить величину подаваемого напряжения, а для реверсирования достаточно сменить полярность. Недостатком является сложность устройства и невысокая надежность щеточного узла, его склонность к искрению и шумность. Кроме того, постоянное напряжение сложно передавать на большие расстояния, из-за чего нет магистральных линий такого типа. Питание придется создавать самостоятельно, используя выпрямительные или инверторные схемы. Также про двигатели постоянного тока можно почитать здесь.

Коллекторные двигатели

По своей конструкции они аналогичны двигателям постоянного тока. Однако питаются переменным однофазным током. Статорная обмотка возбуждения у них включена последовательно с обмоткой якоря. Вращение вала происходит за счет синхронной смены полюсов магнитного поля в статорной и роторной обмотках.

К перечисленным выше достоинствам – большому вращающему моменту, нечувствительности к перегрузкам, стоит отнести и то, что это единственная электрическая машина переменного тока, которой можно без проблем управлять.

Для изменения скорости вращения вала достаточно уменьшить питающее напряжение, а для реверсирования поменять местами точки подключения коллекторного узла со статорной обмоткой. Поэтому коллекторные электродвигатели широко применяются в бытовых электроприборах.

Например, в стиральных машинах, дрелях и другом электрифицированном инструменте. К недостаткам, основным из которых является сложность и малая надежность щеточного узла, стоит отнести и невозможность подключения трехфазного напряжения. Просто потому, что в этом случае щеток должно быть шесть. Это ограничивает максимальную мощность двигателей: у однофазных машин при напряжении 220 вольт это значение не бывает более 2,5 киловатта.

Синхронные электродвигатели переменного тока

У них статорная обмотка питается переменным трехфазным током, а роторная – постоянным. Чтобы их магнитные полюса сцепились и вызвали движение вала, такой электродвигатель надо раскрутить вручную или другим мотором. Фактически они являются генератором переменного тока, работающим в режиме вращения. Достоинством машины являются высокий крутящий момент и стабильность частоты вращения.

Читать еще:  Как установить электросчетчик в гараже

Недостатками – сложность пуска и наличие коллектора со щеточным узлом, что снижает их надежность. А также невозможность регулирования частоты вращения. Применяются в установках, которые работают постоянно или с очень длительным рабочим циклом. Например, на перекачивающих станциях или транспортерных лентах.

Узнать больше об электродвигателях можно узнать в нашей статье «Электрический двигатель: виды и характеристики».

Способы расчета мощности электродвигателя

Учитывая широкое распространение, неудивительно, что формул мощности электродвигателя существует довольно много. Самые простые в плане применения на производстве – следующие три подхода.

  1. Расчет мощности электродвигателя по току. Для определения фактического показателя прибор надо подключить (напряжение – фиксированное) и изменять ток поочередно на каждой из обмоток при помощи амперметра. Алгоритм действий такой:
    • берется количество замеров;
    • определяется сила тока в Амперах для каждого замера;
    • все показатели суммируются и делятся на количество замеров;
    • среднее значение силы тока умножаем на напряжение и получаем мощность электродвигателя в кВт (или Ваттах).
  2. Расчет мощности электродвигателя по размерам. Надо измерить диаметр и длину сердечника статора, узнать частоту оборотов вала.
  3. Расчет мощности электродвигателя асинхронного по силе тяги:
    • тахометром определяем частоту вращения вала;
    • штангенциркулем меряем радиус вала (если нет циркуля, можно взять обычную линейку);
    • динамометр используем, чтобы замерять тяговое усилие устройства;
    • формула мощности электродвигателя выглядит как P = F (тяговая сила)*n (частота вращения)*r (радиус вала)*2*3,14.

Понятие мощности

Так для чего необходимо знать мощность двигателя? Что это за показатель, и почему на него нужно обращать внимание при выборе?

Электрическая мощность – показатель, характеризующий, насколько быстро передается или преобразуется кинетическая энергия. Представляет собой произведение напряжения сети на силу тока проводника. Единицей измерения считается 1 ватт.

Чтобы рассчитать показатель, в случае, когда по шильдикам (специальное изображение на двигателе, содержащее в себе данные обо всех основных характеристиках устройства) можно получить информацию лишь о номинальной максимальной мощности, необходимо:

  • найти данные о коэффициенте полезного действия двигателя (КПД) и коэффициенте его мощности;
  • принять к сведению взаимодействие динамических характеристик вала электродвигателя и КПД.

Обладая этими сведениями, можно с легкостью посчитать затраченную мощность, которая будет равна отношению номинальной мощности к КПД.

Обратите внимание, что энергия, которая потребляется электроприборами, включает в себя два основных типа мощностей двигателя: активную и реактивную. Активная компонента расходуется на полезную работу и образование тепла. Реактивная мощность говорит о способности деталей электродвигателя сохранять получаемую энергию.

Чтобы осуществить расчет, необходим достаточно большой набор инструментов: электрическая сеть, выступающая источником тока, линейка или специальный прибор – штангенциркуль, амперметр (прибор, позволяющий определить силу тока), динамометр, табличка, содержащая сведения о зависимости константы от числа полюсов, тахометр.

Читать еще:  Как опломбировать счетчик

Расчет мощности двигателя формула для компрессора

Выбирая электродвигатель, наиболее подходящий для работы того или иного компрессора, необходимо учитывать продолжительный режим работы данного механизма и постоянную нагрузку. Расчет требующейся мощности двигателя Рдв осуществляется в соответствии с мощностью на валу основного механизма. В этом случае следует учитывать потери, возникающие в промежуточном звене механической передачи.

Дополнительными факторами являются мощности, назначение и характер производства, на котором будет эксплуатироваться компрессорное оборудование. Они оказывают определенное влияние, в связи с чем оборудование может потребовать незначительных, но постоянных регулировок для поддержки производительности на должном уровне.

Определить мощность двигателя можно по формуле: , в которой:

  • Q – значение производительности или подачи компрессора (м 3 /с);
  • А – работа по совершению сжатия (Дж/м 3 );
  • ηк – индикаторный КПД (0,6-0,8) для учета потерь мощности при реальном сжатии воздуха;
  • ηп – механический КПД (0,9-0,95) учитывающий передачу между двигателем и компрессором;
  • кз– коэффициент запаса (1,05-1,15) для учета факторов, не поддающихся расчетам.

Работа А рассчитывается по отдельной формуле: А = (Аи + Аа)/2, где Аи и Аа представляют собой соответственно изотермическое и адиабатическое сжатие.

Значение работы, которую необходимо совершить до появления требуемого давления, можно определить с помощью таблицы:

Типичная работа компрессора характеризуется продолжительным режимом работы. Реверсивные электроприводы, как правило, отсутствуют, включения и выключения крайне редкие. Поэтому наиболее оптимальным вариантом, обеспечивающим нормальную работу компрессоров, будет синхронный электрический двигатель.

Режимы работы электродвигателей

Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Читать еще:  Электронный счетчик электроэнергии

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

Базовые расчетные показатели

О том, как узнать мощность электродвигателя в статье будет показано далее, на примере с исходными данными.

Хороший научный проект не останавливается на конструировании силового аппарата. Очень важно произвести расчет мощности электродвигателя и различные электрические и механические параметры вашего аппарата и рассчитать формулу мощности электродвигателя используя неизвестные значения и полезные формулы.

Для расчета электродвигателя мы будем использовать Международную систему единиц (СИ). Это современная метрическая система, официально принятая в электротехнике.

Одним из важнейших законов физики является основной закон Ома. Он утверждает, что ток через проводник прямо пропорционален приложенному напряжению и выражается как:

I = V / R

где I — ток, в амперах (A);

V — приложенное напряжение, в вольтах (V);

R — сопротивление, в омах (Ω).

Эта формула может использоваться во многих случаях. Вы можете рассчитать сопротивление вашего двигателя, измерив, потребляемый ток и приложенное напряжение. Для любого заданного сопротивления (в двигателях это в основном сопротивление катушки), эта формула объясняет, что ток можно контролировать приложенным напряжением.

Потребляемая электрическая мощность двигателя определяется по следующей формуле:

Pin = I * V

где Pin — входная мощность, измеренная в ваттах (Вт);

I — ток, измеренный в амперах (A);

V — приложенное напряжение, измеренное в вольтах (V).

Расчет по лошадиным силам

Если Вам известно количество лошадиных сил Вашего движка, то можно легко узнать и вычислить мощность двигателя. Для подсчета используется простая формула:

Расшифровывается она так:

  • М(ЛС) — мощность двигателя внутреннего сгорания, выраженная в лошадиных силах.
  • 0,735 — это поправочный коэффициент, на который необходимо умножить количество Ваших «лошадок».

Чему равна лошадиная сила в машине

1 лошадиная сила — это 0,7355 Ватт. Подобная единица измерения была изобретена Джеймсом Ваттом в 1789 году для подсчета мощности паровых двигателей. Такое необычное название имеет интересную историю: чтобы доказать выгоду применения своей паровой машины, Джеймс Уатт провел эксперимент, в котором паровая машина «соревновалась» с лошадью в поднимании тяжестей на большую высоту.

Эксперимент показал, что паровой движок «сильнее» лошади в 4 раза, а название «лошадиная сила» вошло в инженерное дело в качестве единицы измерения.

Калькулятор расчета объёма двигателя

Калькулятор расчета производительности форсунок

Калькулятор перевода силы тока в мощность

Расчет мощности электричества при ремонте и проектировании

Калькулятор расчета времени разряда АКБ

Калькулятор расчета тока утечки в автомобиле и времени разряда АКБ

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×