Kurs-ufa.ru

В помощь Электрику
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловая защита двигателя

Чтобы избежать неожиданных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя двигателя, важно, чтобы двигатель был оснащен каким-то защитным устройством .

Основы встроенной защиты двигателя для начинающих (на фото: вид установленного термостата внутри двигателя, кредит: johndearmond.com)

В этой статье мы рассмотрим встроенную защиту двигателя с тепловой защитой от перегрузки, чтобы избежать повреждения и разрушения двигателя. Встроенный протектор всегда требует внешнего выключателя, в то время как некоторые встроенные типы защиты двигателя даже требуют реле перегрузки.

Внутренняя защита // Встроенная в двигатель

Зачем нужна встроенная защита двигателя, когда двигатель уже оснащен реле перегрузки и предохранителями? Иногда реле перегрузки не регистрирует перегрузку двигателя.

Вот несколько примеров этого //

  1. Если двигатель закрыт и медленно нагревается до высокой температуры повреждения.
  2. В общем, высокая температура окружающей среды.
  3. Если внешняя защита двигателя установлена ​​с слишком высоким током отключения или установлена ​​неправильным образом.
  4. Если двигатель в течение короткого периода времени перезапускается несколько раз, ток заблокированного ротора нагревает двигатель и в конечном итоге повреждает его.

Степень защиты, обеспечиваемая устройством внутренней защиты, классифицируется в стандарте IEC 60034-11.

Обозначение TP

TP является аббревиатурой для термической защиты. Существуют различные типы термической защиты и идентифицируются TP-кодом (TPxxx), который указывает:

  • Тип тепловой перегрузки, для которой разработана тепловая защита (1 цифра)
  • Количество уровней и тип действия (2 цифры)
  • Категория встроенной тепловой защиты (3 цифры)

Когда речь заходит о двигателях насоса, наиболее распространенными обозначениями TP являются:

  • TP 111 — Защита от медленной перегрузки
  • TP 211 — защита от быстрой и медленной перегрузки.

Внутренняя защита, встроенная в обмотки

Индикация допустимого уровня температуры, когда двигатель подвергается тепловой перегрузке. Категория 2 допускает более высокие температуры, чем в категории 1.

Символ
(ТР)
Техническая перегрузка с вариацией
(1 разряд)
Количество уровней и области функций (2 цифры)категория
(3 цифры)
TP 111Только медленная (т.е. постоянная перегрузка)1 уровень при отсечке1
TP 1122
TP 1212 уровня при аварийном сигнале и обрезании1
TP 1222
TP 211Медленный и быстрый (т.е. постоянная перегрузка и блокировка)1 уровень при отсечке1
TP 2122
TP 2212 уровня при аварийном сигнале и обрезании1
TP 2222
TP 311Только быстрое (т.е. заблокированное условие)1 уровень при отсечке1
TP 3122

Информация о том, какой тип защиты была применена к двигателю, может быть найдена на паспортной табличке с использованием обозначения TP (тепловая защита) в соответствии с IEC 60034-11 .

В общем, внутренняя защита может быть реализована с использованием двух типов защитных устройств:

  1. Термозащитные или
  2. Термисторы.

Тепловые защитные устройства — встроенные в клеммную коробку

Термальные защитные устройства или термостаты используют сменный, биметаллический, дисковый переключатель для открытия или закрытия контура, когда он достигает определенной температуры. Термические защитные устройства также называются Klixons (торговое название от Texas Instruments).

Когда биметаллический диск достигает заданной температуры, он открывает или закрывает набор контактов в цепи управления с напряжением . Термостаты доступны с контактами для нормально разомкнутого или нормально замкнутого режима, но одно и то же устройство не может использоваться для обоих.

Термостаты предварительно откалиброваны изготовителем и не могут быть отрегулированы. Диски герметично закрыты и размещены на клеммной колодке.

Верхняя табличка: TP 211 в двигателе MG 3.0 kW, оборудованная PTC; Нижняя табличка: TP 111 в двигателе Grundfos MMG 18, 5 кВт, оборудованный PTC.

Символы термического выключателя двигателя

Символы (слева направо):

  1. Термовыключатель без обогревателя
  2. Термовыключатель с нагревателем
  3. Термовыключатель без подогревателя для трехфазных двигателей (звёздная защита)

Термостат может либо активировать цепь аварийного сигнала, если он нормально разомкнут, либо отключить контактор двигателя, если он нормально замкнут и последовательно подключен к контактору.

Поскольку термостаты расположены на внешней поверхности концов катушек, они воспринимают температуру в этом месте. В связи с трехфазными двигателями термостаты считаются нестабильной защитой от стойла или других быстро меняющихся температурных условий.

В однофазных двигателях термостаты защищают от запорных роторов.

Вернуться к индексу ↑

Тепловой выключатель — встроенный в обмотки

Тепловые защитные устройства также могут быть встроены в обмотки, см. Иллюстрацию ниже. Они работают как чувствительный выключатель питания для одно- и трехфазных двигателей. В однофазных электродвигателях до заданного размера двигателя около 1, 1 кВт он может быть установлен непосредственно в основной цепи, чтобы служить в качестве защитного устройства для намотки.

Символ тепловой защиты

Тепловая защита должна быть соединена последовательно с обмоткой или с цепью управления в двигателе.

Тепловая защита, встроенная в обмотки

Klixon и Thermik являются примерами термического переключателя. Эти устройства также называются PTO (Protection Thermique à Ouverture).

Токовые и температурно-чувствительные термические выключатели: Top: Klixons; Нижняя часть: Thermik — PTO

Внутренний монтаж

В однофазных двигателях используется один термический выключатель. В трехфазных электродвигателях между фазами двигателя помещаются два тепловых выключателя, соединенных последовательно. Таким образом, все три фазы контактируют с термическим выключателем.

Термические переключатели могут быть модифицированы на конце катушки, но в результате увеличивается время реакции. Коммутаторы должны быть подключены к внешней системе мониторинга. Таким образом, двигатель защищен от медленной перегрузки. Тепловые выключатели не требуют реле усилителя.

Тепловые выключатели НЕ МОЖЕТЕ защищать от запорных роторов.

Вернуться к индексу ↑

Как работает терморегулятор?

Кривая с правой стороны показывает сопротивление в зависимости от температуры для типичного теплового выключателя. В зависимости от производителя теплового выключателя изменяется кривая.

TN обычно составляет около 150-160 ° С.

Сопротивление в зависимости от температуры для типичного теплового выключателя

Вернуться к индексу ↑

соединение

Подключение трехфазного двигателя со встроенным термореле и реле перегрузки.

Обозначение TP для диаграммы

Защита в соответствии со стандартом IEC 60034-11: TP 111 (медленная перегрузка) . Для работы с запорным ротором двигатель должен быть оснащен реле перегрузки.

Автоматическое повторное включение (слева) и повторное включение вручную (справа)

  • S1 — Включение / выключение
  • S2 — Выключатель
  • K 1 — Контактор
  • t — Термовыключатель в двигателе
  • M — двигатель
  • MV — реле перегрузки

Термические переключатели могут быть загружены следующим образом:

Читать еще:  Реле напряжения для квартиры

U max = 250 В переменного тока
I N = 1, 5 А

I max = 5, 0 А (ток отсечки и выключения)

Вернуться к индексу ↑

Термисторы — также встроены в обмотки

Второй тип внутренней защиты — термисторы или датчики положительного температурного коэффициента (PTC) . Термисторы встроены в обмотки двигателя и защищают двигатель от запорных роторов, непрерывной перегрузки и высокой температуры окружающей среды.

Затем тепловая защита достигается путем контроля температуры обмоток двигателя с помощью датчиков PTC. Если обмотки превышают номинальную температуру отключения, датчик подвергается быстрому изменению сопротивления относительно изменения температуры.

В результате этого изменения внутренние реле обесточивают управляющую катушку контактора размыкания внешней линии. По мере охлаждения двигателя и приемлемой температуры обмотки двигателя сопротивление датчика уменьшается до уровня сброса.

На этом этапе модуль автоматически сбрасывается автоматически, если только он не настроен для ручного сброса. Когда термисторы устанавливаются на концах катушки, термисторы могут быть классифицированы только как TP 111 . Причина в том, что термисторы не имеют полного контакта с концами катушки и, следовательно, они не могут реагировать так быстро, как если бы они были первоначально установлены в обмотку.

Система измерения температуры термистора состоит из датчиков положительного температурного коэффициента (PTC), встроенных последовательно по три — один между каждой фазой, и согласованного твердотельного электронного переключателя в закрытом модуле управления. Набор датчиков состоит из трех датчиков, по одному на фазу.

Защита PTC, встроенная в обмотки

Только чувствительная к температуре. Термистор должен быть подключен к цепи управления, которая может преобразовывать сигнал сопротивления, который снова должен отключить двигатель. Используется в трехфазных двигателях.

Сопротивление в датчике остается относительно низким и постоянным в широком температурном диапазоне и резко увеличивается при заданной температуре или точке срабатывания.

Когда это происходит, датчик действует как твердотельный тепловой выключатель и отключает контрольное реле .

Реле открывает цепь управления станком, чтобы отключить защищенное оборудование. Когда температура намотки возвращается к безопасному значению, модуль позволяет выполнить ручной сброс.

Вернуться к индексу ↑

Ссылка // Grundfos — Motor Book (Скачать здесь)

Защита асинхронного двигателя от перегрузок

Поскольку наибольшее применение получил асинхронный двигатель, на его примере будем рассматривать, как двигатель защитить от перегрузки и перегрева.

Для них возможно пять типов аварий:

  • обрыв в обмотке статора фазы (ОФ). Возникает ситуация в 50% аварий;
  • затормаживание ротора, возникающее в 25% случаев (ЗР);
  • понижение сопротивления в обмотке (ПС);
  • плохое охлаждение мотора (НО).

При возникновении любой из перечисленных видов аварий, существует угроза поломки двигателя, поскольку происходит его перегрузка. Если не установлена защита, ток возрастает на протяжении длительного времени. Но может произойти его резкий его рост при коротком замыкании. Исходя из возможного повреждения, подбирается защита электродвигателя от перегрузок.

Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Термисторная защита электродвигателей и реле термисторной защиты двигателя

Термисторная (позисторная) защита электродвигателей

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя. Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) — полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Читать еще:  Что такое уравнивание потенциалов

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 — открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

  • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
  • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
  • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
  • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя TER-7 ELCO (Чехия)

  • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
  • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
  • функция ПАМЯТЬ — реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
    RESET ошибочного состояния:
    a) кнопкой на передней панели
    b) внешним контактом (на расстоянии по двум проводам)
  • функция контроля короткого замыкани или отключения сенсора , состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
  • выходной контакт 2x переключ. 8 A / 250 V AC1
  • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
  • универсальное напряжение питания AC/ DC 24 — 240 V
  • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2

Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)

  • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом — РТС резисторы), встроенные в обмотку двигателя ( производителем).
  • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
  • индикация рабочих состояний:
  • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
  • напряжение питания АС 220, 100, 380 (по исполнениям)

Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. Реле контроля температуры двигателя G2TF02 (PTC), 2ПК (требуется модуль TR2)TELE Серия GAMMA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. Реле термисторной защиты двигателя CR-810 F&F ЕвроАвтоматика (Белоруссия)

  • контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
  • датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
  • напряжение питания 230V AC и 24V AC/DC
  • максимальный комутируемый ток 16А, 1 переключающий контакт
  • контроль КЗ в цепи термисторных датчиков
  • с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.

Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

  • Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
  • Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
  • Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
  • MTR02 с гальванической изоляцией
  • Сопротивление PTC в раб. режиме 50 Ω 3,3кΩ или PTC Реле контроля температуры двигателя BTR-12EBTR Electronic Systems, «METZ CONNECT» (Германия)

  • реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
  • выпускается с памятью ошибки и без ЗУ (запоминающее устройство)
  • напряжение питания 230V AC / 24V AC/DC
  • предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)

Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)

  • Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
  • напряжение питания AC/DC 24 — 240V (и др. в зависимости от исполнения 110,400V)
  • 1 CO, ток контактов 6А

Реле контроля температуры двигателя серии 71.91 и 71.92 Finder (Италия)

Термисторное реле определения температуры для промышленного применения.

Реле Finder термисторной защиты двигателя [71.91.8.230.0300]

  • 1 нормально разомкнутый контакт, без памяти отказов
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Реле Finder термисторной защиты двигателя (с памятью) [71.92.8.230.0401]

  • Термисторное реле с памятью отказов
  • 2 перекидных контакта
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Память отказов выбирается переключателем
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Внутренняя установка

В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.

Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Регулировка теплового реле

Для эффективного выполнения функции отключения электродвигателя или другого обслуживаемого аппарата необходимо правильно отрегулировать настройки ТР таким образом, чтобы вероятность ложных срабатываний была исключена. Настройку рекомендуется осуществлять на специализированном стенде способом фиктивных нагрузок:

  • Через термочувствительный элемент пропускают ток для моделирования реальной тепловой нагрузки.
  • С помощью таймера определяют время срабатывания. При проведении настройки с помощью контрольного винта при токе 1,5 Iн время срабатывания должно быть не более 2,5 минут, 5-6 Iн – не более 10 секунд.

Как работает тепловое реле защиты электродвигателя

Данный прибор осуществляет контроль над величиной тока, и в случае длительного отклонения от номинала установки производит размыкание контактов. Таким образом, цепь управления остается без питания, а пусковое устройство размыкается. Тепловое реле защищает агрегат от механических перегрузок, заклинивания ротора, перекоса фаз и других аварийных ситуаций.

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Защита двигателя при использовании частотного преобразователя

Преобразователь частоты – это электронное устройство, способное реализовать программно или аппаратно различные виды защиты.

Частотный преобразователь позволяет изменять скорость вращения вала. При этом изменяется не только частота питающего напряжения, но и величина напряжения. Важно правильно устанавливать рабочие точки на вольт-частотной характеристике двигателя.

В частном случае отношение напряжения к частоте является константой. Однако, исходя из принципов и задач регулирования, можно менять это отношение, изменяя форму кривой регулирования. Например, из-за понижения момента на низких частотах прибегают к увеличению минимального выходного напряжения, что, при злоупотреблении, может привести к перегреву.

При работе двигателя от частотного преобразователя, когда скорость вращения может быть гораздо меньше номинала, необходимо устанавливать принудительное независимое воздушное охлаждение.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×