Kurs-ufa.ru

В помощь Электрику
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конструкция асинхронного двигателя

Асинхронный двигатель: виды и детали конструкции

Главная страница » Асинхронный двигатель: виды и детали конструкции

Популярность асинхронных электродвигателей очевидна. Между тем асинхронный двигатель купить человеку, неискушённому в электрике, дело далеко не простое. Базовые знания помогут правильно выбрать и купить асинхронный двигатель с короткозамкнутым ротором или же с фазным. Принцип работы указанных двигателей, их устройство — разные, несмотря на присутствие единого термина в названии. Рассмотрим разницу между асинхронным электродвигателем с токосъёмными кольцами и асинхронным двигателем с короткозамкнутым ротором.

Конструкция асинхронных двигателей

В зависимости от способа выполнения обмотки ротора асинхронного двигателя последние разделяются на две большие группы: двигатели с короткозамкнутой обмоткой на роторе и двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами. Двигатели с короткозамкнутой обмоткой на роторе более дешевы в производстве, надежны в эксплуатации, имеют жесткую механическую характеристику, т. е. при изменении нагрузки от нуля до номинальной частота вращения машины уменьшается всего на 2-5%.

К недостаткам этих двигателей относятся трудность осуществления плавного регулирования частоты вращения в широких пределах, сравнительно небольшой пусковой момент, а также большие пусковые токи, в 5-7 раз превышающие номинальный. Указанными недостатками не обладают двигатели с контактными кольцами, однако конструкция ротора у них существенно сложнее, что ведет к удорожанию двигателя в целом. Поэтому их применяют в случае тяжелых условий пуска и при необходимости плавного регулирования частоты вращения в широком диапазоне.

Как указывалось, асинхронный электродвигатель имеет неподвижную часть — статор, на котором расположена обмотка, создающая вращающееся магнитное поле, и подвижную часть — ротор, в котором создается электромагнитный момент, приводящий во вращение сам ротор и исполнительный механизм. Сердечники статора и ротора набираются из изолированных листов электротехнической стали обычно толщиной 0,5 мм. Изоляция листов статора — лаковая пленка, ротора — окалина, образующаяся в процессе прокатки. Листы статора и ротора имеют пазы, в которых размещаются обмотки статора и ротора. Короткозамкнутая обмотка ротора обычно выполняется литой из алюминиевого сплава. В процессе заливки образуются как стержни (проводники) обмотки, расположенные в пазах, так и замыкающие их накоротко кольца, расположенные вне сердечника ротора. Кольца могут быть снабжены вентиляционными лопатками для улучшения вентиляции двигателя и теплоотвода от обмотки ротора. Отсутствие изоляции обмотки ротора обеспечивает хороший отвод тепла от обмотки к сердечнику.

Двигатели с короткозамкнутой обмоткой на роторе имеют ряд конструктивных исполнений по форме пазов на роторе. Форма пазов ротора выбирается в зависимости от требований к пусковым характеристикам двигателя. Наиболее рациональными для пазов ротора с одной клеткой являются трапецеидальные овальные пазы. Ротор называется глубокопазным, если высота паза ротора превышает глубину проникновения магнитного поля (для обмоток из алюминия двигателей промышленной частотой 50 Гц эта глубина равна 15 мм). В тех случаях, когда требуются большие значения пускового момента, применяется ротор с двойной клеткой, причем пазы в этом случае могут чередоваться. Пазы могут быть закрытыми или полузакрытыми. Короткозамыкающие кольца в случае литых двойных клеток выполняются общими для обеих клеток.

В ряде случаев обмотка двухклеточного двигателя выполняется из цветных металлов на основе меди. Тогда внешняя обмотка изготавливается из латуни или специальной бронзы, благодаря чему обеспечивается относительно большое ее активное сопротивление. Эта обмотка выполняет функции пусковой в асинхронном двигателе. Другая обмотка ротора — внутренняя — изготовляется из меди с минимальным активным сопротивлением. Она выполняет функции основной рабочей обмотки двигателя. Обе обмотки могут иметь круглые пазы, однако внутренняя обмотка в ряде случаев выполняется прямоугольной или овальной формы. Короткозамыкающие торцевые кольца для обеих обмоток обычно изготовляются из меди.

Общий вид асинхронного двигателя: подшипники — 1 и 11, вал — 2, подшипниковые щиты — 3 и 9, ротор — 5, статор — 6, вентилятор — 10, колпак — 12, ребра — 13, лапы — 14

Существуют другие модификации пазов ротора (бутылочного и трапецеидального профиля), однако описанные выше являются наиболее характерными для асинхронных двигателей. Асинхронные двигатели с фазным ротором обычно имеют полузакрытые пазы на роторе, в которые укладывается трехфазная обмотка с тем же числом полюсов, что и обмотка статора. Предварительно изолированные стержни этой обмотки заводят с торцевой стороны ротора. Фазы роторной обмотки обычно соединяют в звезду и подводят к трем контактным кольцам, расположенным на валу двигателя и изолированным друг от друга. В цепь обмотки фазного ротора с помощью контактных колец и соприкасающихся с ним щеток можно подключать добавочные сопротивления или вводить дополнительную ЭДС. Это используется при необходимости изменения рабочих или пусковых характеристик двигателей. Кроме того, с помощью контактных колец и щеток можно замыкать обмотку ротора накоротко.

Для уменьшения износа щеток в ряде конструкций ротора двигателей имеются специальные щеткоподъемные приспособления. С помощью этих устройств по окончании пуска двигателя контактные кольца замыкаются накоротко, а щетки приподнимаются и не участвуют в работе. Между ротором и статором асинхронного двигателя имеется воздушный зазор. При выборе воздушного зазора сталкиваются противоречивые тенденции. Минимальный (выбранный по механическим соображениям) воздушный зазор приводит к уменьшению тока холостого хода двигателя и увеличению коэффициента мощности. Однако при малом воздушном зазоре увеличиваются добавочные потери в поверхностном слое статора и ротора, добавочные моменты и шум двигателя. Вследствие роста потерь уменьшается КПД. Поэтому в современных сериях асинхронных двигателей воздушный зазор выбирается несколько большим, чем требуется по механическим соображениям (чтобы ротор при работе не задевал о статор).

Схемы соединения обмоток.

В асинхронных трехфазных двигателях используются два способа соединения фаз обмоток между собой: в звезду и треугольник. Эти соединения могут выполняться как внутри машины — глухое соединение, так и вне двигателя — с помощью сменных перемычек на специальном щитке, установленном на корпусе машины. В первом случае к выводному щитку подводятся три вывода, во втором — шесть выводов (начала и концы фаз). Внешнее соединение фаз наиболее удобно с точки зрения ее эксплуатации. В таком случае начала и концы фаз обмоток могут свободно отсоединяться при необходимости и подключаться к испытательной аппаратуре.

Читать еще:  Электрощиток для дома

Питающее напряжение.

Асинхронные двигатели общего назначения обычно выпускаются для работы на двух напряжениях, например 127/220, 220/380 и 380/660 В. При меньшем из каждых двух напряжений фазы двигателя соединяются в треугольник, а при большем — в звезду. При внешнем соединении фаз двигателя сравнительно просто можно подключить его к одному из указанных на щитке напряжений. Некоторые электродвигатели выпускаются на одно напряжение, в этом случае фазы соединены в звезду.

Электротехнические материалы.

Для магнитопроводов (сердечников) статора и ротора асинхронных двигателей общего назначения широко применяются холоднокатаные низколегированные электротехнические стали. Они выпускаются в рулонах (лентах) нужной ширины, что позволило автоматизировать процесс штамповки листов и уменьшить отходы. Для двигателей серии 4А мощностью до 15-20 кВт применяется холоднокатаная сталь марки 2013 (нелегированная), а для машин большей мощности — сталь марки 2212 (слаболегированная). Для двигателей старых серий (А, А2) применялась горячекатаная сталь марки 1211. Применение холоднокатаных сталей позволило снизить расход стали на 10-15 и массу конструктивных деталей на 5-7% .

Изоляционные материалы применяются для изоляции токоведущих проводов, расположенных в одном пазу (друг от друга) — витковая изоляция, проводов разных фаз между собой — междуфазовая изоляция, проводов от заземленных сердечников — корпусная изоляция. Толщина изоляции определяется рабочим напряжением двигателя, классом нагревостойкости изоляции, условиями эксплуатации двигателя. В зависимости от предельно допускаемой температуры изоляционные материалы подразделяются на классы нагревостойкости. В свою очередь класс нагревостойкости изоляции (витковой, междуфазовой, корпусной) и пропиточных составов определяет допустимые превышения температуры для других частей двигателя в соответствии с ГОСТ 183-74.

В соответствии с ГОСТ 8865-70 изоляционные материалы разделены на семь классов нагревостойкости — У, А, Е, В, F, Н, С. Для изоляции асинхронных двигателей общего назначения обычно применяются четыре класса Е, В, F, Н с допустимыми температурами изоляционного материала 120, 130, 155, 180 °С соответственно. Обмоточные провода изготовляются с эмалевой, эмалево-волокнистой или волокнистой изоляцией. Толщина изоляционного слоя у проводов с эмалевой изоляцией в 1,5- 3 раза меньше, чем у проводов с волокнистой изоляцией; эмалевая изоляция, кроме того, лучше проводит тепло и является более влагостойкой. Поэтому в двигателях современных серий применяются в основном провода с эмалевой изоляцией марок ПЭТВ, ПЭТВМ (класс нагревостойкости В) и ПЭТВ, ПЭТ 155 (класс F). Провода ПЭТВМ и ПЭТМ разработаны для механизированной укладки обмоток. В двигателях напряжением 3 кВ и выше кроме указанных проводов применяются также провода со стекловолокнистой изоляцией марок ПСД и ПСДК. Диаметр изолированного провода при механизированной укладке всыпной обмотки не превышает 1,4-1,6 мм, при ручной укладке — до 1,8 мм.

Пазовая и междуфазовая изоляция.

В современных сериях двигателей широкое распространение получили композиционные материалы, представляющие собой сочетание полимерных пленок с различными гибкими электроизоляционными материалами на основе синтетических органических или неорганических волокон, причем указанные компоненты связаны между собой клеящими составами. Пленка принимает на себя основную электрическую и механическую нагрузки, в то время как другие компоненты выполняют функции армирующего материала, обеспечивающего необходимые технологические свойства композиции — жесткость, упругость, повышенную стойкость к механическим воздействиям и др.

Одной из важных функций волокнистых подложек является обеспечение надежной связи между поверхностями пазовой изоляции и прилегающими к ним катушками обмотки и сердечником за счет лучшей смачиваемости волокнистых материалов пропиточными составами по сравнению с пленками. Композиционные материалы обладают высокими механическими свойствами. Широко используются пленкосинтокартоны марок ПСК-Ф, ПСК-ЛП, состоящие из полиэтилентерефталатной пленки марки ПЭТФ, оклеенной с двух сторон бумагой из фенилонового или лавсанового волокна.

Для прокладок в лобовых частях применяют материалы с повышенным коэффициентом трения, такие, как пленкослюдопласт и пленкослюдокартон. Пропиточные и покровные составы. В двигателях современных серий широкое распространение нашли пропиточные составы без растворителей, что существенно уменьшило длительность процесса полимеризации, улучшило качество пропитки и теплопроводность изоляции. Для пропитки асинхронных двигателей современных серий применяются составы без растворителей марок КП-34, КП-50, КП-103. ЭКД-14, а также лаки с растворителями марок МЛ-92, ПЭ-933, КО-916К, КО-964Н. После пропитки и сушки на лобовую часть обмоток наносятся покровные составы для повышения стойкости обмотки к воздействию окружающей среды (пыль, масло, соляной туман, вредные примеси в воздухе и др.).

В качестве покровных составов применяют эмали ГФ92-ГС и ЭП91 (с растворителями) и компаунды КП-34, КП-50. Формы исполнения асинхронных двигателей определяются требованиями ГОСТ 2479-79 и разделяются на девять групп. Асинхронные двигатели серии 4А основного исполнения имеют четыре основные формы: IM 1081 — на лапах с двумя подшипниковыми щитами с одним цилиндрическим концом вала; IM 2081 — то же, что и IM 1081, но с фланцем на подшипниковом щите; IM 3081 — без лап с двумя подшипниковыми щитами, фланцем на подшипниковом щите и одним цилиндрическим концом вала со стороны привода; IM 9081 — встраиваемое исполнение с цилиндрической станиной (или без станины) с двумя подшипниковыми щитами и одним цилиндрическим концом вала со стороны привода. Как видно, условное обозначение двигателя по форме исполнения и способу монтажа состоит из латинских букв IM и четырехзначного числового индекса, первая цифра которого (от 1 до 9) определяет конструктивное исполнение, вторая и третья (от 00 до 99) — способ монтажа, четвертая (от 0 до 9) — условное обозначение конца вала. По степени защиты персонала от соприкосновения с токоведущим или движущимися частями, находящимися внутри машины, и попадания твердых посторонних тел и воды внутрь машины также существуют различные формы исполнения. В соответствии с ГОСТ 17494-72 для защиты электрических машин могут применяться 15 исполнений от IP00 до IP56. Для асинхронных двигателей напряжением до 1 кВ приняты две основные степени защиты IP23 и IP44.

Для некоторых специальных исполнений двигателей, работающих в пыльных и влажных помещениях, могут быть приняты степени защиты IP54, IP56. Двигатели, работающие в закрытых помещениях, могут иметь степень защиты IP22. Обозначение по способу защиты состоит из латинских букв IP и двух цифр, первая из которых (от О до 6) указывает на степень защиты персонала от соприкосновения и попадания посторонних предметов внутрь машины, а вторая (от 0 до 8) — на степень защиты от попадания воды:
исполнение IP22 — защита двигателя от проникновения внутрь корпуса твердых тел диаметром более 12 мм и от капель воды, летящих под углом не более 15° к вертикали;
исполнение IP44 — защита от твердых тел размером более 1 мм и от брызг, летящих в любом направлении;
исполнение IP23 — то же, что и IP22, но с защитой от дождя (капли дождя под углом до 60° к вертикали).

Читать еще:  Прибор для измерения петли фаза ноль

Способ охлаждения двигателей регламентируется требованиями ГОСТ 20459-75. Асинхронные двигатели общего назначения выпускаются с двумя способами охлаждения — с самовентиляцией (лопатки вентилятора расположены на роторе двигателя) типа IC01 и с наружным вентилятором, расположенным на валу двигателя, типа IC0141. Обозначение способа охлаждения состоит из латинских букв , следующей за ними прописной буквы, обозначающей вид хладоагента (если охлаждение воздушное — эта буква опускается), и цифрового индекса, который указывает тип цепи для циркуляции хладоагента и способ его перемещения. В ряде модификаций двигателей применяются способы охлаждения IC0041 (естественное без вентилятора) и IC06 (охлаждение от пристроенного вентилятора, приводимого во вращение собственным двигателем).

Конструкция

Проделанный опыт демонстрировал вращение цилиндра за счет вращения постоянного магнита. Поэтому конструкция еще не имеет права называться электродвигателем. Надо изменить ее так, чтобы магнитное поле, необходимое для вращения ротора, создавалось электричеством. И это возможно при использовании трехфазного тока.

Асинхронная машина снабжается:

  • Статором;
  • Ротором;
  • Осью, на которой сидит ротор.

На рисунке внешнее кольцо – это железный статор электродвигателя, состоящий из корпуса со станиной и железного сердечника. На его полюсах размещаются три обмотки (Н – начало, К – конец). Между двумя соседними намотками соблюдается угол – 120 градусов. Каждая из них подключена к одной из фаз трехфазного тока.

Внутри статорного кольца – металлический цилиндр, посаженный на ось, относительно которой он может вращаться. Это ротор асинхронного мотора. Он может быть короткозамкнутым или фазным.

Короткозамкнутый ротор

Это устройство выглядит как сердечник, собранный из листовой стали. Он имеет пазы, в которых находится алюминий, залитый в растопленном состоянии. Металл образует стержни, замыкающиеся торцевыми кольцами накоротко (отсюда и название). С короткозамкнутым ротором сравнивают беличью клетку, потому что у них прослеживается внешнее сходство.

Важно! Для электродвигателей с короткозамкнутым ротором высокой мощности вместо алюминия заливают медь.

Фазный ротор

Конструкция асинхронной машины с фазным ротором сложна. Однако у них есть преимущество перед короткозамкнутым устройством. Заключается оно в возможности плавно менять скорость вращения.

Фазным ротором представляется вал, укрепленный на шихтованном сердечнике, имеющем трехфазную обмотку. Этим он напоминает конструкцию статора. Начала намоток соединяют по схеме звезда, а концы объединяются с помощью контактных колец. Они изолируются между собой и располагаются на роторном вале.

Чтобы кольца соприкасались с фазным ротором, для каждого из них предусмотрена пара щеток, изготовленных из металла и графита. Они закрепляются в специальных держателях, которые прижимают их к кольцам с помощью пружин.

В случае с фазным ротором трехфазная намотка подсоединяется к пусковому реостату. Поэтому в роторной электроцепи образуется дополнительное сопротивление.

Принцип работы

Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле. Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться. Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.

Сам двигатель работает следующим образом:

  • Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
  • Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
  • Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
  • В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.

Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1. Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе. Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.

Устройство

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Читать еще:  Люминесцентные лампы характеристики

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Применение

Область применения асинхронных электродвигателей охватывает достаточно большой сегмент хозяйственной деятельности человека. Поэтому их можно встретить в различных типах станочного оборудования – токарных, шлифовальных, фрезерных, прокатных и т.д. В работе грузоподъемных кранов, талей, тельферов и прочих механизмов.

Их используют для лифтов, горнодобывающей техники, землеройного оборудования, эскалаторов, конвейеров. В быту их можно встретить в вентиляторах, микроволновках, хлебопечках и прочих вспомогательных устройствах. Такая популярность асинхронных электродвигателей обусловлена их весомыми преимуществами.

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.
  • Малый пусковой крутящий момент.
  • Высокий пусковой ток (в 4-7 раз выше номинального).
  • Нет возможности регулировать скорость.

Магнитное поле трехфазного статора толкает ротор

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Советы по выбору

Как выбрать асинхронный двигатель? Здесь нужно учитывать условия, в которых он будет эксплуатироваться, и характеристики питающих цепей.

Вот несколько рекомендаций:

Приобретение асинхронной электрической машины уместно, если есть необходимость комбинировать долговечность мотора и возможность плавно регулировать частоту вращения. В других случаях лучше использовать двигатель другого типа.

Если вы не нуждаетесь в реверсировании, то оптимальным вариантом будет однофазный электродвигатель асинхронного типа.

Для трёхфазной сети лучше приобрести и мотор трёхфазный. Это наиболее рационально.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector