Двигатель с фазным ротором
Асинхронную машину изобрели в 1888 г., когда практически одновременно Н. Тесла запатентовал схему электромотора, а Г. Феррарис написал теоретическую статью о принципах функционирования АД. Год спустя похожая установка была изобретена и русским ученым О. Доливо-Добровольским, в которой использовалась трехфазная обмотка.
Эти изобретения стали революционными в мировой промышленности, и по сей день многофазные АД применяются в большинстве сфер жизни: от бытовых задач до массивных производств. Революция произошла благодаря конструкции мотора, обеспечивающей большую эффективность работы. Отныне все действия на производствах осуществлялись быстрее и с меньшими затратами.
АД с фазным ротором
К сведению! Именно прототип Доливо-Добровольского дал начало всем существующим сегодня АД.
Общая информация
Чтобы понять, как работает асинхронный двигатель с фазным ротором, необходимо внимательно изучить особенности его пуска. При запуске установки ее ротор параллельно переходит из состояния покоя в медленное и равномерное вращение. При этом система уравновешивает момент сил сопротивления посредством собственного вала.
Во время запуска начинается усиленное потребление энергетических ресурсов, что связано с преодолением тормозного момента и компенсацией потерь внутри силовой установки. Нередко параметры начального пускового момента далеки от требуемых, поэтому асинхронный двигатель не способен перейти в режим полноценной работы. В таком случае ускорение приостанавливается, а постоянное воздействие чрезмерного тока приводит к перегреву внутренних узлов установки.
По этой причине частота запусков двигателя ограничивается несколькими включениями. Если агрегат работал от электрической сети с низкой мощностью, тогда подобное явление может снизить общее напряжение и нарушить работу других приборов, присоединенных к этой линии.
Наличие в роторной цепи пусковых резисторов снижает показатели электрического тока, но при этом поднимает начальный пусковой момент, пока он не достигнет пиковой отметки. Запуск силовой установки бывает легким, нормальным или тяжелым.
В зависимости от этого фактора можно определить оптимальные параметры сопротивления резисторов.
После успешного запуска остается поддерживать стабильный вращающий момент на этапе разгона ротора, что сократит продолжительность перехода из спокойного состояния в стадию вращения и снизит вероятность нагрева. Для этого необходимо уменьшить показатели сопротивления резисторов.
Переключение разных резисторов происходит из-за подключения контакторов ускорения в последовательном порядке. Отключать двигатель от электрической сети можно только при накоротко замкнутой роторной цепи. Если это требование проигнорировать, то появится риск существенного перенапряжения в обмоточных фазах статора.
Плавный запуск двигателя с фазным ротором
Система плавного разгона электродвигателя с фазным ротором работает автоматически. Оператор нажимает кнопку «Пуск», дальше автоматика все делает сама.
Главный контактор подключает к трехфазному напряжению обмотку статора. Двигатель начинает вращение с минимально возможной скоростью, так как в цепь его ротора включены резисторы с максимально возможным сопротивлением.
Через фиксированную задержку, формируемую реле времени, включается первый контактор, шунтирующий первую секцию сопротивлений в цепи ротора. Скорость вращения немного возрастает. Проходит еще время, второе реле времени запускает следующий контактор. Шунтируется следующая секция сопротивлений, ток в цепи ротора возрастает, скорость вращения – увеличивается. И так далее, до полного исключения всех сопротивлений из цепи ротора. При этом электродвигатель выходит на номинальные обороты.
Схема плавного пуска асинхронного электродвигателя с фазным ротором
Число ступеней разгона выбирается из условий тяжести запуска. Разгон получается не таким уж плавным, ток в статоре возрастает ступенями. При старте и переходе на каждую последующую ступень, электродвигатель все равно потребляет пусковой ток, хоть и меньшего значения.
Этого недостатка лишены электродвигатели, для разгона которых используются жидкостные пускатели (или стартеры). В них в качестве резистора используется жидкость с высоким удельным сопротивлением. Это – дистиллированная вода с растворенной в ней специальной солью. Уменьшение сопротивления достигается за счет уменьшения расстояния между электродами, помещенными в эту жидкость. Электроды приводятся в движение небольшим электродвигателем через червячную передачу. За счет этого уменьшение сопротивления в цепи ротора и разгон электродвигателя происходят плавно.
Отличие короткозамкнутого ротора от фазного
В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название — “беличья клетка”.
Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.
Разновидности крановых электродвигателей
В виду использования различных принципов для вращения ротора в электродвигателе, многие из них нашли широкое применение в эксплуатации крановых установок. Среди электродвигателей общепромышленного назначения выделяют машины переменного и постоянного тока, асинхронные двигатели, как с фазными, так и с короткозамкнутым ротором. Далее рассмотрим каждый из типов, применяемых для кранового оборудования.
Переменного тока
Для отечественных кранов используются асинхронные электрические машины переменного тока. Отличительной особенностью таких установок являются хорошие тяговые характеристики, а вот к недостаткам относится необходимость подключения сразу трех фаз и большие пусковые токи. Большинство моделей изготавливаются на стандартную частоту сети в 50Гц, такие варианты способны постоянно переносить перегрузки в 10 – 15%.
Рис. 1. Пример электродвигателя переменного тока
Наиболее распространенными моделями в сети переменного тока являются электродвигатели MTF и MTKF, которые имеют фазный и короткозамкнутый ротор соответственно. А в металлургическом производстве модельный ряд составляют электрические машины MTH и MTKH с теми же конструктивными особенностями. На практике для питания и одних, и других может применяться переменное напряжение с частотой в 50 и 60Гц. Возможность вращения ротора для них колеблется в пределах от 600 до 1000 об/мин для питающей электрической величины частотой 50Гц. Или от 700 до 1200 на частотах 60Гц. Электроприводы механизмов в большинстве случаев может иметь сразу несколько скоростей.
Постоянного тока
Электродвигателями постоянного тока комплектуются такие крановые установки, которым требуется производить частые включения в течении часа или всей рабочей смены. Помимо этого они позволяют регулировать частотный диапазон в достаточно широком диапазоне. Разумеется, что в наше время трехфазные асинхронные машины могут приближаться к моторам постоянного тока за счет внедрения систем частотного преобразования. Регулирование выполняется за счет либо ослабления магнитного поля статора или повышения напряжения обмоток ротора.
Рис. 2. Пример двигателя постоянного тока
Конструктивно выпускаются на мощность от 2 до 190кВт, в зависимости от величины питающего напряжения группы обмоток возбуждения могут иметь последовательное или параллельное соединение. В данном типе крановых электродвигателях управление производится за счет изменения токов в обмотке возбуждения.
Краново-металлургические асинхронные электродвигатели серии 4МТ
Металлургическая промышленность характеризуется значительными объемами перемещаемых материалов и удельным весом металла. Поэтому крановые электродвигатели серии МТ должны обеспечивать заявленную мощность, несмотря на частоту вращения. Ярмо электрической машины изготавливается с четырьмя или восьмью полюсами для передачи магнитного потока, материалом для магнитопровода служит холоднокатаная сталь. Для изоляции крановых электродвигателей в качестве диэлектрика применяются полимерные пленки, пропитанные ткани или бумага.
Рис. 3. Краново-металлургические электродвигатели
В электроприводах металлургических кранов на этапе изготовления закладывается большая надежность – до 0,98, в то время, как все остальные могут иметь коэффициент 0,96. Срок эксплуатации, заявленный изготовителем также должен быть не ниже 20 лет.
С фазным ротором
Крановые электродвигатели с фазным ротором отличаются наличием отдельной обмотки на вращающейся части. Электроснабжение роторной катушки осуществляется за счет коллекторного узла, который производит токосъем и отбор мощности через скользящий контакт. Однако щеточный механизм в них — это наиболее изнашиваемым элемент, после истирания графитовых контактов они подлежат замене.
Рис. 4. Конструкция электродвигателя с фазным ротором
Данный тип трехфазных асинхронных электрических машин отличается плавным пуском и большой нагрузочной способностью. За счет чего их устанавливают на краны среднего и тяжелого типа, перемещающие тяжеловесные грузы. Позволяют регулировать усилие момента на валу в трех и четырехшаговом режиме, пропорционально повышая мощность воздействия.
С короткозамкнутым ротором
Конструктивно вращающаяся часть представляет собой стальную конструкцию литого или наборного типа. В отличии от предыдущего варианта крановые электродвигатели с короткозамкнутым ротором отличаются меньшей массой и меньшей себестоимостью. Однако главным недостатком является малый момент, создаваемый на валу, а это, в свою очередь, приводит к дефициту усилия. Поэтому моторы с короткозамкнутым ротором устанавливаются на маломощные крановые установки, предназначенные для перемещения грузов небольшой массы с малой скоростью.
Рис. 5. Электродвигатель с короткозамкнутым ротором
Технические характеристики
Как и любые электроустановки, электрические машины выпускаются в соответствии с требованиями и условиями, в которых их будут эксплуатировать. При выборе конкретной модели кранового электродвигателя руководствуются его параметрами. К основным характеристикам относятся:
- Потребляемая мощность – характеризует объем расходуемой электрической энергии, необходимой для работы электродвигателя. Может выражаться в киловаттах или кило вольт-амперах.
- КПД – показывает соотношение полезной работы, совершенной электрической машиной по отношению к потребленной из сети электроэнергии. В крановых установках этот параметр может варьироваться от 60 до 90%.
- Частота вращения – показывает количество оборотов вала, которые тот может совершать за единицу времени. Как правило, используется величина из расчета на одну минуту. Для каждой модели обороты могут изменяться, поэтому параметр будет иметь диапазонное значение.
- Мощность на валу – определяет усилие, создаваемое крановым электродвигателем непосредственно на рабочем органе.
- Номинальное рабочее напряжение – обозначает разность потенциалов, которая должна подаваться на ввод электрической машины для приведения ее в движение.
- Масса и габаритные размеры – физические параметры, необходимые для установки в общую конструкцию крана.
- Степень пыле- влагозащищенности — обозначается латинскими буквами IP и двумя цифрами, указывающими на возможность проникновения частиц внутрь корпуса.
Режимы работы
Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:
- Продолжительный;
- Кратковременный;
- Периодический;
- Повторно-кратковременный;
- Особый.
Продолжительный режим — основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.
Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.
Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.
Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.
Особый режим – продолжительность и период включения произвольный.
В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.
Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.
Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.
Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.
Асинхронный двигатель — общий взгляд
Статистику наиболее широко используемых электрических моторов возглавляет именно трехфазный асинхронный двигатель.
Асинхронные моторы богатым ассортиментом присутствуют на рынке. Но какая из машин выглядит лучшей в техническом плане или применительно к условиям использования?
Практически 80% механических мощностей, используемых всеми отраслями экономики, обеспечиваются трехфазными асинхронными двигателями.
Деловая ставка на этот вид электрических машин обусловлена:
- простой надёжной конструкцией,
- низкой стоимостью,
- хорошими рабочими характеристиками,
- отсутствием сложных схем коммутации,
- возможностями регулирования скорости.
Асинхронным называют двигатель по причине очевидной. Вращательный момент такой конструкции не даёт стабильной синхронности движения.
Мощность трехфазного асинхронного двигателя транспортируется от статора к ротору посредством индуктивной связи.
Конструктивный расклад: 1 — крышка корпуса передняя; 2 — стержень вала; 3 — арматура; 4 — лопасти захвата воздуха для охлаждения; 5 — сердечник; 6 — рама; 7 — клеммная коробка; 8 — крышка корпуса задняя
Электрическая машина наделена двумя основными деталями конструкции:
- Статор.
- Ротор.
Статор — стационарная часть конструкции с обмотками медным проводом, на которые подается трехфазный электрический ток.
Ротор — подвижная деталь конструкции (создаёт момент вращения). Передаёт механическое усилие нагрузке через стальной вал. Ротор трехфазного асинхронного двигателя классифицируется двумя видами:
- Короткозамкнутый.
- Фазный (фазовращающий, токосъёмный, раневой).
Соответственно, в зависимости от вида конструкции детали, трехфазный асинхронный двигатель классифицируется как:
- Мотор короткозамкнутого действия.
- Мотор фазного действия.
Конструкция статора для обоих видов двигателей, при этом, остаётся неизменной.
Набор основных деталей классической конструкции, которая встречается повсеместно. В зависимости от мощности могут изменяться лишь габаритные размеры компонентов
Другими частями — составляющими конструкции, являются: стальной вал, подшипники, крыльчатка охлаждения, клеммная коробка.
Особенности конструкции статора
Конструкция статора трехфазного асинхронного двигателя содержит трех базовых компонента:
- Раму.
- Сердечник.
- Обмотки возбуждения.
Статор выступает частью корпуса трехфазного асинхронного двигателя. Его основная функция — крепление сердечника статора и проводную намотку.
Внешняя область статора выполняет функцию покрытия, обеспечивает защиту и механическую прочность внутренним частям асинхронного двигателя.
Рама статора изготовлена из литой или свариваемой стали. Каркас трехфазного асинхронного двигателя нуждается в прочности и жесткости. Длина воздушного зазора между рамой и ротором очень мала.
Если не обеспечить прочность и жёсткость конструкции, нарушается концентрическое положение ротора. Такое состояние приведет к разбросу баланса магнитного натяжения.
Основная функция сердечника статора — перенос переменного магнитного потока. С целью уменьшения потерь вихревых токов, сердечник статора ламинируется. Создаются наслоённые тиснения толщиной около 0,4-0,5 мм.
Статорный сердечник — по сути, набор из многочисленных металлических пластин, плотно спрессованных друг с другом. Для намотки медного провода оставлены слоты
Все тиснения спрессованы в единое целое, образуя сердечник статора, жёстко скрепленный рамой. Штамповка обычно содержит элементы кремниевой стали, что способствует уменьшению гистерезисных потерь при работе двигателя.
Виды асинхронных моторов
Асинхронный двигатель с короткозамкнутым ротором претендует на лидерство среди всех видов моторов переменного тока. Это оборудование часто используется для нужд промышленности.
Практика применения показала главные свойства этого вида электродвигателей:
- низкая рыночная стоимость,
- надежность эксплуатации,
- эффективность работы,
- низкие требования в обслуживании.
Другой вид оборудования – асинхронный двигатель с токосъёмными кольцами (с фазным якорем), отличается куда меньшей потребностью применения в промышленности.
Мотор с токосъёмником: 1 — статорный сердечник; 2 — корпус (рама); 3 — кронштейн; 4 — вал; 5 — подшипник; 6 — якорь; 7 — группа щёток; 8 — устройство коммутации
Не более 5% — 10% моторов с токосъёмными кольцами используются в индустрии.
Объясняется этот момент следующими конструктивными недостатками асинхронных моторов с фазным вращением:
- потребность частого обслуживания,
- значительный расход меди,
- сложность конструкции для ремонта.
Различия между видами асинхронных моторов
Одним из ярко выраженных различий между фазными и короткозамкнутыми двигателями видится фактор управления.
Электродвигатель, наделённый фазным токосъёмником, допускает включение в цепь внешнюю нагрузку (сопротивление) для управления скоростью двигателя.
В свою очередь схема двигателя с короткозамкнутым ротором не предполагает добавления любой внешней цепи, т.к. пазы ротора прорезаны вплоть до его торцевых граней.
Таким выглядит один из конструктивных вариантов токосъёмника на три фазы. Здесь следует отметить конструкционную особенность — несколько скошенное расположение слотов
Конструкция ротора фазовращающего типа представлена в виде ламинированного сердечника, наделённого слотами, расположенными параллельно один другому.
Каждый слот содержит по одному стержню и несёт трёхфазную изолированную обмотку. Причём число витков на стержнях равно числу витков обмоток статора.
Три концевых вывода обмотки подключаются, образуя нейтраль «звезды», а начальные выводы соединены с тремя медными кольцами, размещёнными на валу. С кольцами контактируют токосъёмные щётки.
Короткозамкнутый ротор изготовлен несколько иначе. Слоты на сердечнике не располагаются параллельно. Эти элементы ротора скошены под некоторым углом.
Элементы КЗР: 1 — алюминиевое кольцо; 2, 7 — вал стальной; 3, 6 — лопасти алюминиевые; 4 — алюминиевые стержни; 5 — ламинированный стальной сердечник
Сердечник сделан многослойным, с прорезями по всей длине окружности, замкнутыми на торцах сердечника медным или алюминиевым кольцом.
Конфигурация скошенных слотов короткозамкнутого ротора имеет свои преимущества:
- снижаются шумы электродвигателя при работе,
- обеспечивается плавный крутящий момент,
- уменьшается магнитная блокировка статора по отношению к ротору,
- увеличивается сопротивление ротора за счёт длинных проводников стержней.
Особенности для применения на практике
Изучая возможности применения тех или иных конструкций на практике, следует отметить более высокую эффективность моторов с короткозамкнутым ротором.
Относительно эффективности, что показывают асинхронные электромоторы с токосъёмными кольцами, короткозамкнутые выглядят явно лучше. Коэффициент мощности у фазных моторов также существенно ниже.
Однако преимущественной стороной фазных конструкций является возможность регулировать скорость вращения, тогда как короткозамкнутые модификации таких возможностей не дают.
Но регулировка скорости вращения асинхронного двигателя с короткозамкнутым ротором возможна при помощи частотного преобразователя.
Ещё одно преимущество асинхронного электродвигателя с фазным ротором – низкий пусковой ток. Для двигателей с короткозамкнутым ротором этот параметр существенно выше.
Поэтому электродвигатели с фазным ротором, как правило, используются на агрегатном оборудовании, где важен высокий пусковой момент:
- подъёмники промышленные,
- лифты гражданские,
- краны строительные,
- лебёдки производственные и т.п.
Тогда как другой вид моторов (короткозамкнутых) применяется часто в качестве приводов сверлильных, токарных станков и другой техники, где отсутствует потребность высокого пускового момента.
Учебное видео пособие по двигателям разного вида
Ремонт и характеристики неисправностей
Причиной ремонта могут служить внешние и внутренние причины.
Внешние причины ремонта:
- обрыв провода или нарушение соединений с электрическим током,
- сгорание предохранителей,
- понижение или повышения напряжения,
- перегруженность АД,
- неравномерная вентиляция в зазоре.
Внутренняя поломка может возникнуть по механическим и электрическим причинам.
Механические причины ремонта:
- неправильное регулирование зазора подшипников,
- повреждение вала ротора,
- расшатывание щеткодержателей,
- возникновение глубоких выработок,
- истощение креплений и трещины.
Электрические причины ремонта:
- замыкания витков,
- поломка провода в обмотках,
- пробивание изоляции,
- пробой пайки проводов.
Данные причины – это далеко не полный список поломок.
Асинхронный двигатель – незаменимый и важный механизм, применяемый для обслуживания быта и различных отраслей промышленности. Для практического действия АД с фазным ротором необходимо знать техническую характеристику управления, использовать его по назначению и регулярно проводить ремонт при технических осмотрах. Тогда асинхронный двигатель станет практически вечной эксплуатации.