Для чего предназначен трансформатор тока
Для чего предназначен трансформатор тока
Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, а уменьшение − с помощью уменьшающих.
§ 7.1. Устройство однофазного трансформатора.
Схема однофазного трансформатора.
Рис.7-1. Схема однофазного трансформатора.
Трансформатор представляет собой замкнутый магнитный провод, на котором расположено две или несколько обмоток. Для уменьшения потерь на гистерезис магнитопровод изготавливают из магнитомягкого материала – трансформаторной стали, имеющий узкую петлю намагничивания. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь кремния (4-5%), а сам магнитопровод собирают из отдельных листов толщиной 0,35-0,5 мм, изолированных друг от друга теплостойким лаком или специальной бумагой.
Магнитопровод предназначен для создания внутри аппарата магнитного потока Ф.
Обмотки трансформатора изготавливаются из медного провода и располагают на одном и том же или на разных стержнях рядом или одну под другой. Обмотка трансформатора, к которой подводится напряжения имеющей сети, называется первичной. а обмотку, к которой подсоединяется нагрузка, называется вторичной .
§ 7.2. Принцип действия однофазного трансформатора.
Работа трансформатора основана на явлении взаимной индукции. При подключении первичной обмотки в сеть переменного тока напряжением U1 по обмотке начнет проходить ток I1. который создаст в магнитопроводе переменный магнитный поток Ф. Этот поток, пронизывая витки вторичной обмотки, индуктирует в ней ЭДС (Е2 ), которую можно использовать для питания нагрузки. Так как, первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком, то индуктируемые в них ЭДС определяются по формулам:
где ω1. ω2 – количество витков.
§ 7.3. Режимы работы трансформатора.
1. Режим (опыт) холостого хода.
Вторичная обмотка разомкнута, а к первичной подводится номинальное напряжение. Под действием этого напряжения в обмотке протекает небольшой по величине ток, который называют током холостого хода. Из этого режима определяют коэффициент трансформации, который, пренебрегая падением напряжения в обмотке, определяется по формуле:
Из режима холостого хода также определяется мощность потерь стали (Рст ).
2. Трансформатор под нагрузкой.
К первичной обмотке подключают нагрузку, под действием чего в ней устанавливается ток, величина и напряжение которого по закону Ленца поддерживает неизменный магнитный поток трансформатора. Из этого режима определяют процентное изменение напряжения на зажимах вторичной обмотки во всем диапазоне изменения нагрузки (от 0 до номинального).
где U2 – напряжение на зажимах вторичной обмотки в режиме холостого хода; U2ном – номинальное напряжение трансформатора. Из этого режима также строят внешнюю характеристику трансформатора.
3. Режим (опыт) короткого замыкания.
Вторичная обмотка заворачивается. Затем в первичную обмотку подводят малое по величине напряжение, под действием которого в первичной и вторичной обмотках устанавливаются номинальные токи. Напряжение, при котором выполняется данный опыт, называется напряжением короткого замыкания. Мощность, определяемая в этом опыте, называют мощность идущую на покрытие потерь в меди – тепловые потери (Ро.ном ).
Суммарные потери мощности в трансформаторе с учетом первого и третьего опыта определяют по формуле
где Кн – коэффициент нагрузки
где Р2 – мощность, отдаваемая в нагрузку; cosφ2 – коэффициент мощности нагрузки; Sном – полная номинальная мощность трансформатора
Суммарные потери мощности в трансформаторе можно определить по формуле:
где Р1 – мощность потребляемая из сети.
§ 7.4. Трехфазные трансформаторы.
Рис.7-3. Трехфазный трансформатор.
В линиях электропередачи используются в основном трехфазные силовые трансформаторы.
Для подключения трансформатора к линиям электропередачи на крышке бака имеются вводы, представляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами А, В, С, вводы низшего напряжения – буквами a, b, c. Ввод нулевого провода располагают слева от ввода а и обозначают 0.
Принцип работы и электромагнитные процессы в трехфазном трансформаторе аналогичны рассмотренным выше. Особенностью трехфазного трансформатора является зависимость коэффициента трансформации линейных напряжений от способа соединения обмоток.
Применяются главным образом три способа соединения обмоток трехфазного трансформатора:
1. соединение первичных и вторичных обмоток звездой;
2. соединение первичных обмоток звездой, вторичных – треугольником;
3. соединение первичных обмоток треугольником, вторичных – звездой.
§ 7.5. Трансформаторы для дуговой электросварки (сварочный трансформатор).
Обычные трансформаторы в качестве питания дуговой электрической сварки совершенно не пригодны потому, что перед зажиганием электрической дуги и замы замыкании электропроводов накоротко возникает недопустимо большой ток (в 15—20 раз больше номинального).
Рис.7-4. Внешняя характеристика сварочного трансформатора.
В трансформаторах для сварки электрической дугой вторичное напряжение меняется от U2X = 70 В при холостом ходе до U2r = 0 при коротком замыкании, когда электрод касается свариваемой детали. Ток I2К в последнем случае не должен превышать рабочий ток 12 более чем на 20—40%. Внешняя характеристика такого трансформатора должна иметь вид, показанный на рис.7-4. Тогда даже при больших колебаниях напряжения, обусловленных непостоянством сопротивления электрической дуги, ток I2 будет почти неизменным, что необходимо для доброкачественной сварки. Для получения такого большого падения напряжения во вторичной цепи сварочные трансформаторы конструируются с обмотками, имеющими большие магнитные потоки рассеяния Фр. или комплектуются с отдельным реактором, или снабжаются дополнительной обмоткой на общем магнитопроводе.
При первой форме исполнения (рис.7-5, а)первичная обмотка 1 рассчитана на стандартные напряжения U1 = 220 или 380 В. Вторичная обмотка 2, соединенная последовательно с отдельной реактивной катушкой 3, имеет при холостом ходе напряжение U2х = 70 В и при номинальном вторичном токе I2Н напряжение U2 ≈30 В. Сварочный ток между электродом 5 и изделием 4 регулируется изменением воздушного зазора 6 катушки 3 путем перемещения подвижной части сердечника 7.
Рис.7-5. Трансформатор для дуговой сварки.
Вторая форма исполнения (рис.7-5, б) — однокорпусное. Здесь реактивная катушка 3 и вторичная обмотка 2, расположенные на общем магнитопроводе, связаны магнитно. Подвижная часть магнитопровода 7 для изменения воздушного зазора в обоих исполнениях может перемещаться специальной рукояткой. Коэффициент полезного действия сварочных трансформаторов составляет 83—90%, a cos ф = 0,52 ÷ 0,62.
1. Что называется трансформатором?
2. Опишите устройство однофазного трансформатора?
3. Каковы принципиальные основы работы трансформатора?
4. Какие режимы работы трансформатора вы знаете?
5. Какие существуют отличия трехфазных трансформаторов?
6. Опишите принцип работы сварочного трансформатора.
Особенности конструкции
При работе трансформатора тока вторичная обмотка всегда находится под нагрузкой, сопротивление которой регулируется требованиями к точности коэффициента трансформации. Допускается незначительное отклонение сопротивления от указанного в паспорте устройства.
Если произойдет увеличение нагрузки, то во второй обмотке резко возрастет напряжение, что может привести к пробою изоляции и поломке устройства. Такая ситуация создает угрозу безопасности сотрудникам, которые обслуживают электрический прибор. В устройство трансформатора тока входят:
- основание;
- магнитопровод (сердечник);
- первичная обмотка;
- вторичная обмотка;
- клеммник для подсоединения кабеля от источника питания;
- заземляющий контакт.
Первичная обмотка изготавливается в виде катушки, закрепленной на магнитопроводе, или как шина. Согласно конструктивного исполнения в некоторых устройствах нет встроенной первичной катушки, а дополняется она обслуживающим персоналом путем соединения отдельного провода через специальное окно.
Корпус устройства выполняет роль изоляции и предохранения обмоток от внешних повреждений. В последних моделях устройств сердечники изготавливаются из нанокристаллических сплавов, которые значительно увеличивают класс точности прибора.
Из-за больших потерь в сердечнике устройство начинает сильно нагреваться, что приводит к износу или выходу из строя его изоляции. Вторая обмотка в разомкнутом состоянии также создает негативное явление, так как происходит перегрев и выгорание магнитного провода.
Основной характеристикой прибора считается коэффициент трансформации, который обозначает отношение номинального тока в первичной обмотке к такому же значению во вторичной. Реальное значение этого коэффициента несколько отличается от номинального, что объясняется степенью погрешности прибора.
Связано это с тем, что в магнитных конструкциях имеются потери, связанные с намагничиванием и нагревом магнитопровода. Чтобы несколько сгладить эти погрешности производители используют витковую коррекцию.
Назначение трансформаторов напряжения
Подобное оборудование относится к однофазным устройствам, через которые присоединяют киловольтметры, фазометры для обозначения правильности чередования фаз, ваттметры для определения мощности и для подключения защитных реле в цепях напряжения 3, 6, 10 кВ промышленной частоты.
Обмотки первичного и вторичного напряжения трансформатора ТН отличаются сопротивлением большой величины и малой мощностью. Работа происходит в режиме холостого хода. Стандартное номинальное напряжение вторичной обмотки не бывает более 100 В и имеет рабочий ток от 1 до 5 А.
Рис. №1. Трансформатор напряжения масляный 6 кВ. НТМИ
Рассмотрим какие бывают трансформаторы напряжения.
Классификация трансформаторов напряжения
Типы измерительных трансформаторов напряжения включают в линейку изделия, классифицируемых следующим образом:
однофазные трансформаторы с одним заземленным концом первичной обмотки. К заземляемым относятся и трехфазные тр-ры с заземленной нейтралью катушки первичного напряжения;
незаземляемые тр-ры напряжения с полностью изолированными от «земли» участками, зажимами «первички»;
каскадный тип с обмоткой первичного напряжения, разделенной на несколько последовательных секций. В конструкции предусмотрены обмотки, выравнивающие напряжение. В наличии есть связующая катушка, которая служит для передачи мощности к обмотке вторичного напряжения;
емкостный ТН с делителем;
двухобмоточный ТН с одной обмоткой вторичного напряжения;
трехобмоточный ТН с двумя обмотками: основного напряжения и дополнительной.
Рис. №2. Трансформатор напряжения, литого типа, опорный с заземленным выводом первичной обмотки, 3НОЛ-СВЭЛ-6. Используется для КРУН, КРУ, КСО
Рис. №3. Трехфазный антирезонансный масляный трансформатор для сетей с изолированной нейтралью
Чтобы понять для каких задач нужны измерительные трансформаторы рассмотрим назначение и разберем принцип действия оборудования.
МАРКИРОВКА ТОКОВЫХ ТРАНСФОРМАТОРОВ
Условное обозначение устройств отечественного производства осуществляется в соответствии с нормативной документацией и техническими условиями ми (ТУ).
Она имеет следующий вид:
ТNM — X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 XY12 X13 X14, где
- Т — первая буква в обязательном порядке «Т» означает, что устройства относятся к трансформаторным;
- N — конструкционные особенности устройства: проходной (П), опорный (О), с использованием шины в качестве первичной обмотки (Ш), с фарфоровой изоляцией корпуса (Ф);
- M — материал изоляции обмоток: «М» — масляная (фактически, смешанная бумажно-масляная изоляция), «Л» — литая (эпоксидная смола), «Г» – газовая;
- Х1 — значение рабочего (номинального) напряжения;
- Х2 — вариант конструкционного исполнения. Как правило, касается расположения контактов первичной и вторичной обмоток как;
- Х3 — габаритные размеры корпуса. Чаще всего, эта маркировка применяется для трансформаторов, устанавливаемых в силовых шкафах. Код привязывают к длине корпуса;
- Х4 — буквенный код определяющий расположение выводов вторичной катушки относительно установочного основания. «А» — параллельно установочной поверхности, «Б» — перпендикулярно относительно установочной поверхности;
- Х5 — наличие и тип изолирующих барьеров;
- Х6 – значение точности при передаче данных, внешняя цепь;
- Х7 — коэффициента безопасности для исходящих катушек (измерительные цепи);
- Х8 – значение точности для исходящих катушек (измерительные цепи);
- Х9 — коэффициент кратности;
- Х10 – рабочее значение нагрузки для устройств измерения;
- Х11 — рабочее значение нагрузки для устройств защиты;
- Х12 — значение входящего и исходящего тока;
- Х14 — максимальное значение силы тока при односекундном воздействии короткого замыкания на пределе термической стойкости;
- Х15 — климатическое исполнение оборудования.
Схемы подключения
Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.
Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.
При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.
Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.
Схема «неполная звезда» применяется для двухфазного соединения.
В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.
Основные схемы подключения:
Основные схемы подключения
- В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
- Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
- Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
- Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.
Режимы работы трансформаторов тока
У ТТ существуют два основных режима работы – установившийся и переходный.
В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.
Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.
ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.
Вторичные обмотки ТТ (не менее одной на каждый магнитопровод) обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации. Незначительное отклонение сопротивления вторичной цепи от номинала, указанного в паспорте ТТ, по модулю полного сопротивления Z или коэффициента мощности cos φ (обычно cos φ = 0,8 индукт.) приводит к изменению погрешности преобразования и, возможно, ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокое напряжение во вторичной обмотке, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создаёт угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровода трансформатор начинает перегреваться, что также может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. Полностью разомкнутая вторичная обмотка ТТ не создаёт компенсирующего магнитного потока в сердечнике, что приводит к перегреву магнитопровода и его выгоранию. При этом магнитный поток, созданный первичной обмоткой, имеет очень высокое значение, и потери в магнитопроводе сильно нагревают его. В конструктивном отношении трансформаторы тока выполнены в виде сердечника, шихтованного из холоднокатанной кремнистой трансформаторной стали, на которую наматываются одна или несколько вторичных изолированных обмоток. Первичная обмотка также может быть выполнена в виде катушки, намотанной на сердечник, либо в виде шины. В некоторых конструкциях вообще не предусмотрена встроенная первичная обмотка; первичная обмотка выполняется потребителем путём пропускания провода через специальное окно. Обмотки и сердечник заключаются в корпус для изоляции и предохранения обмоток. В некоторых современных конструкциях ТТ сердечник выполняется из нанокристаллических (аморфных) сплавов для расширения диапазона, в котором трансформатор работает в классе точности.
Коэффициент трансформации измерительных трансформаторов тока является их основной характеристикой. Номинальный (идеальный) коэффициент указывается на шильдике трансформатора в виде отношения номинального тока первичной (первичных) обмоток к номинальному току вторичной (вторичных) обмоток, например, 100/5 А или 10-15-50-100/5 А (для первичных обмоток с несколькими секциями витков). При этом реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих — синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального. Эти величины регламентированы ГОСТами и служат основой для присвоения трансформаторам тока классов точности при проектировании и изготовлении. Поскольку в магнитных системах имеют место потери связанные с намагничиванием и нагревом магнитопровода, вторичный ток оказывается меньше номинального (то есть погрешность отрицательная) у всех ТТ. В связи с этим для улучшения характеристик и внесения положительного смещения в погрешность преобразования применяют витковую коррекцию. А это означает, что коэффициент трансформации у таких откорректированных трансформаторов не соответствует привычной формуле соотношений витков первичной и вторичной обмоток.
Первичная обмотка ТТ включается в разрез линейного провода (последовательно с нагрузкой), в котором измеряется сила тока. Вторичная обмотка замкнута на измерительное устройство с малым сопротивлением. Поэтому, в отличие от силового трансформатора, для которого режим короткого замыкания является аварийным, нормальным режимом для измерительного ТТ являются условия, близкие к КЗ, так как сопротивление во вторичной цепи у него мало.
Через первичную обмотку, имеющую определённое количество витков, течет ток. Вокруг катушки наводится магнитный поток, который улавливается магнитопроводом. Пересекая перпендикулярно ориентированные витки вторичной обмотки, магнитный поток формирует электродвижущую силу. Под влиянием последней возникает ток, протекающий по катушке и нагрузке на выходе. Одновременно на зажимах вторичной цепи образуется падение напряжения.
По конструктиву и применению ТТ условно подразделяются на несколько разновидностей:
- • Опорные монтируются на опорной плоскости.
- • Проходные используются в качестве ввода и устанавливаются в металлических конструкциях, в проемах стен или потолков.
- • Встраиваемые размещаются в полости оборудования: электрических выключателей, генераторов и других электроаппаратов и машин.
- • Разъемные не имеют своей первичной обмотки. Их магнитопроводы из двух половинок, стягиваемых болтами, можно размыкать и закреплять вокруг проводников под током. Эти проводники исполняют роль первичных обмоток.
- • Шинные изготавливаются тоже без первичных обмоток — их роль выполняют пропущенные сквозь окна магнитопроводов ТТ токоведущие шины распредустройств.
- • Накладные надеваются сверху на проходной изолятор.
- • Переносные предназначаются для лабораторных и контрольных измерений.
По выполнению первичной обмотки ТТ подразделяются на одновитковые и многовитковые, а по числу вторичных обмоток — на устройства с одной обмоткой и с несколькими вторичными обмотками (до четырёх, пяти). По числу ступеней трансформации — на одноступенчатые и каскадные.
К общей классификации трансформаторов обоих типов относятся: количество коэффициентов трансформации (однодиапазонные и многодиапазонные), критерии по материалу диэлектрика между первичной и вторичной обмотками и по материалу внешней изоляции — маслонаполненные, газонаполненные, сухие, с литой, фарфоровой и прессованной изоляцией, с вязкими заливочными компаундами, комбинированные бумажно-масляные. ТТ и ТН устанавливаются на открытом воздухе, в закрытых и в подземных установках, на морских и речных судах, внутри оболочек электроустановок и связываются контрольными проводами и кабелями с оборудованием вторичных цепей. По диапазону рабочего напряжения выделяют трансформаторы, функционирующие в устройствах до 1000 В и выше 1000 B. Трансформаторы также классифицируются по классу точности.